public static KeyValuePair <double, double> Action(Network network, Optimizer optimizer, IDataEnumerator data, IDataEnumerator val, int count, int batch = 32) { DateTime start; start = DateTime.Now; int layers = network.layers.Count; for (int i = 0; i < layers - 1; i++) { Network background; Network autoencoder; if (!network.layers[i].ITrained) { continue; } background = new Network(); for (int j = 0; j < i; j++) { background.layers.Add(network.layers[j]); } autoencoder = new Network(); autoencoder.layers.Add(network.layers[i]); autoencoder.layers.Add(network.layers[i].Mirror); background.CompileOnlyError(); autoencoder.CompileOnlyError(); NetworkEnumerator nEm = new NetworkEnumerator(background, data); MirrorEnumerator Mem = new MirrorEnumerator(nEm); optimizer.network = autoencoder; double err = optimizer.TrainBatch(Mem, batch, 1).Last(); for (int k = 1; k < count; k++) { Console.Write("{0} ", k); optimizer.TrainBatchContinue(Mem, batch, 1); if ((DateTime.Now - start).TotalMinutes >= 10) { System.IO.File.WriteAllText("autosave_" + i + "_" + k + ".neural", network.SaveJSON()); Console.WriteLine("Save to " + "autosave_" + i + "_" + k + ".neural"); start = DateTime.Now; } } Console.WriteLine("Trained {0} with error {1}", i, (float)err); } return(network.GetError(val)); }
public double TrainContinue(Optimizer optimizer, IDataEnumerator data, int batch) { NetworkEnumerator nEm = new NetworkEnumerator(background, data); MirrorEnumerator Mem = new MirrorEnumerator(nEm); optimizer.network = autoencoder; double err = optimizer.TrainBatchContinue(Mem, batch, 1).Last(); return(err); }
public double TrainContinue(Optimizer optimizer, IDataEnumerator data, int batch) { optimizer.network = autoencoder; if (background.layers.Count != 0) { NetworkEnumerator nEm = new NetworkEnumerator(background, data); double err = optimizer.TrainBatchContinue(nEm, batch, 1).Last(); return(err); } else { double err = optimizer.TrainBatchContinue(data, batch, 1).Last(); return(err); } }
public KeyValuePair <double, double> TrainBatch(Optimizer optimizer, IDataEnumerator data, IDataEnumerator val, int count, int batch = 32) { DateTime start = DateTime.Now; NetworkEnumerator nEm = new NetworkEnumerator(background, data); optimizer.network = autoencoder; optimizer.TrainBatch(nEm, batch, 1).Last(); for (int k = 1; k < count; k++) { optimizer.TrainBatchContinue(nEm, batch, 1); if ((DateTime.Now - start).TotalMinutes >= 10) { System.IO.File.WriteAllText("autosave_" + k + ".neural", network.SaveJSON()); start = DateTime.Now; } } return(autoencoder.GetError(val)); }
public KeyValuePair <double, double> Validation(IDataEnumerator data) { NetworkEnumerator nEm = new NetworkEnumerator(background, data); return(autoencoder.GetError(nEm)); }