///<summary>Выполняет прямой проход через кодирующую нейросеть.</summary> ///<param name="input">Входные данные.</param> public Tuple <Tensor, Tensor> Encode(Tensor input) { var Temp = input; Temp = Layers.Conv2D1x1(input, this.Data.Conv0_Weights, this.Data.Conv0_Biases); Temp = Layers.Conv2D3x3(Temp, this.Data.Conv1_1_Weights, this.Data.Conv1_1_Biases); if (Step != null) { Step(100f / 30f); } Temp = Layers.ReLU(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv1_2_Weights, this.Data.Conv1_2_Biases); if (Step != null) { Step(100f / 30f); } Temp = Layers.ReLU(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.MaxPool2D(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv2_1_Weights, this.Data.Conv2_1_Biases); if (Step != null) { Step(100f / 30f); } Temp = Layers.ReLU(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv2_2_Weights, this.Data.Conv2_2_Biases); if (Step != null) { Step(100f / 30f); } Temp = Layers.ReLU(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.MaxPool2D(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv3_1_Weights, this.Data.Conv3_1_Biases); if (Step != null) { Step(100f / 30f); } Temp = Layers.ReLU(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv3_2_Weights, this.Data.Conv3_2_Biases); if (Step != null) { Step(100f / 30f); } Temp = Layers.ReLU(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv3_3_Weights, this.Data.Conv3_3_Biases); if (Step != null) { Step(100f / 30f); } Temp = Layers.ReLU(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv3_4_Weights, this.Data.Conv3_4_Biases); if (Step != null) { Step(100f / 30f); } Temp = Layers.ReLU(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.MaxPool2D(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv4_1_Weights, this.Data.Conv4_1_Biases); if (Step != null) { Step(100f / 30f); } Temp = Layers.ReLU(Temp); var Conv4_1 = Temp; if (Step != null) { Step(100f / 30f); } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv4_2_Weights, this.Data.Conv4_2_Biases); if (Step != null) { Step(100f / 30f); } Temp = Layers.ReLU(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv4_3_Weights, this.Data.Conv4_3_Biases); if (Step != null) { Step(100f / 30f); } Temp = Layers.ReLU(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv4_4_Weights, this.Data.Conv4_4_Biases); if (Step != null) { Step(100f / 30f); } Temp = Layers.ReLU(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.MaxPool2D(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv5_1_Weights, this.Data.Conv5_1_Biases); if (Step != null) { Step(100f / 30f); } Temp = Layers.ReLU(Temp); var Conv5_1 = Temp; if (Step != null) { Step(100f / 30f); } return(new Tuple <Tensor, Tensor>(Conv4_1, Conv5_1)); }
///<summary>Выполняет прямой проход через кодирующую нейросеть.</summary> ///<param name="Content4_1">Контент со слоя ReLU4_1.</param> ///<param name="Style4_1">Стиль со слоя ReLU4_1.</param> ///<param name="Content5_1">Контент со слоя ReLU5_1.</param> ///<param name="Style5_1">Стиль со слоя ReLU5_1.</param> public Tensor Stylize(Tensor Content4_1, Tensor Style4_1, Tensor Content5_1, Tensor Style5_1) { var Fc4_1 = Layers.Norm(Content4_1); if (this.Step != null) { this.Step(1f / 17f * 100f); } var Fs4_1 = Layers.Norm(Style4_1); if (this.Step != null) { this.Step(1f / 17f * 100f); } var Fc5_1 = Layers.Norm(Content5_1); if (this.Step != null) { this.Step(1f / 17f * 100f); } var Fs5_1 = Layers.Norm(Style5_1); if (this.Step != null) { this.Step(1f / 17f * 100f); } var f4_1 = Layers.Conv2D1x1(Fc4_1, this.Data.sanet4_1_f_Weights, this.Data.sanet4_1_f_Biases); if (this.Step != null) { this.Step(1f / 17f * 100f); } var g4_1 = Layers.Conv2D1x1(Fs4_1, this.Data.sanet4_1_g_Weights, this.Data.sanet4_1_g_Biases); if (this.Step != null) { this.Step(1f / 17f * 100f); } var h4_1 = Layers.Conv2D1x1(Style4_1, this.Data.sanet4_1_h_Weights, this.Data.sanet4_1_h_Biases); if (this.Step != null) { this.Step(1f / 17f * 100f); } var f5_1 = Layers.Conv2D1x1(Fc5_1, this.Data.sanet5_1_f_Weights, this.Data.sanet5_1_f_Biases); if (this.Step != null) { this.Step(1f / 17f * 100f); } var g5_1 = Layers.Conv2D1x1(Fs5_1, this.Data.sanet5_1_g_Weights, this.Data.sanet5_1_g_Biases); if (this.Step != null) { this.Step(1f / 17f * 100f); } var h5_1 = Layers.Conv2D1x1(Style5_1, this.Data.sanet5_1_h_Weights, this.Data.sanet5_1_h_Biases); if (this.Step != null) { this.Step(1f / 17f * 100f); } var S4_1 = Tensor.MatMul(f4_1.Flat().Transpose(), g4_1.Flat()); if (this.Step != null) { this.Step(1f / 17f * 100f); } S4_1 = Layers.Softmax(S4_1); if (this.Step != null) { this.Step(1f / 17f * 100f); } var O4_1 = Layers.ElementwiseSum(Layers.Conv2D1x1(Tensor.MatMul(h4_1.Flat(), S4_1.Transpose()).Unflat(Content4_1.Width, Content4_1.Height), this.Data.sanet4_1_out_conv_Weights, this.Data.sanet4_1_out_conv_Biases), Content4_1); if (this.Step != null) { this.Step(1f / 17f * 100f); } var S5_1 = Tensor.MatMul(f5_1.Flat().Transpose(), g5_1.Flat()); if (this.Step != null) { this.Step(1f / 17f * 100f); } S5_1 = Layers.Softmax(S5_1); if (this.Step != null) { this.Step(1f / 17f * 100f); } var O5_1 = Layers.ElementwiseSum(Layers.Conv2D1x1(Tensor.MatMul(h5_1.Flat(), S5_1.Transpose()).Unflat(Content5_1.Width, Content5_1.Height), this.Data.sanet5_1_out_conv_Weights, this.Data.sanet5_1_out_conv_Biases), Content5_1); if (this.Step != null) { this.Step(1f / 17f * 100f); } var CS = Layers.Conv2D3x3(Layers.ElementwiseSum(O4_1, Layers.Upsample2D(O5_1)), this.Data.merge_conv_Weights, this.Data.merge_conv_Biases); if (this.Step != null) { this.Step(1f / 17f * 100f); } return(CS); }
///<summary>Выполняет прямой проход через кодирующую нейросеть.</summary> ///<param name="input">Входные данные.</param> public Tensor Encode(Tensor input) { var Temp = input; if ((this.Depth == EncoderType.Conv1) || (this.Depth == EncoderType.Conv2) || (this.Depth == EncoderType.Conv3) || (this.Depth == EncoderType.Conv4) || (this.Depth == EncoderType.Conv5)) { Temp = Layers.Conv2D1x1(input, this.Data.Conv0_Weights, this.Data.Conv0_Biases); Temp = Layers.Conv2D3x3(Temp, this.Data.Conv1_1_Weights, this.Data.Conv1_1_Biases); if (Step != null) { switch (this.Depth) { case EncoderType.Conv1: { Step(100f / 2f); break; } case EncoderType.Conv2: { Step(100f / 7f); break; } case EncoderType.Conv3: { Step(100f / 12f); break; } case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } Temp = Layers.ReLU(Temp); if (Step != null) { switch (this.Depth) { case EncoderType.Conv1: { Step(100f / 2f); break; } case EncoderType.Conv2: { Step(100f / 7f); break; } case EncoderType.Conv3: { Step(100f / 12f); break; } case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } } if ((this.Depth == EncoderType.Conv2) || (this.Depth == EncoderType.Conv3) || (this.Depth == EncoderType.Conv4) || (this.Depth == EncoderType.Conv5)) { Temp = Layers.Conv2D3x3(Temp, this.Data.Conv1_2_Weights, this.Data.Conv1_2_Biases); if (Step != null) { switch (this.Depth) { case EncoderType.Conv2: { Step(100f / 7f); break; } case EncoderType.Conv3: { Step(100f / 12f); break; } case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } Temp = Layers.ReLU(Temp); if (Step != null) { switch (this.Depth) { case EncoderType.Conv2: { Step(100f / 7f); break; } case EncoderType.Conv3: { Step(100f / 12f); break; } case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } Temp = Layers.MaxPool2D(Temp); if (Step != null) { switch (this.Depth) { case EncoderType.Conv2: { Step(100f / 7f); break; } case EncoderType.Conv3: { Step(100f / 12f); break; } case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv2_1_Weights, this.Data.Conv2_1_Biases); if (Step != null) { switch (this.Depth) { case EncoderType.Conv2: { Step(100f / 7f); break; } case EncoderType.Conv3: { Step(100f / 12f); break; } case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } Temp = Layers.ReLU(Temp); if (Step != null) { switch (this.Depth) { case EncoderType.Conv2: { Step(100f / 7f); break; } case EncoderType.Conv3: { Step(100f / 12f); break; } case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } } if ((this.Depth == EncoderType.Conv3) || (this.Depth == EncoderType.Conv4) || (this.Depth == EncoderType.Conv5)) { Temp = Layers.Conv2D3x3(Temp, this.Data.Conv2_2_Weights, this.Data.Conv2_2_Biases); if (Step != null) { switch (this.Depth) { case EncoderType.Conv3: { Step(100f / 12f); break; } case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } Temp = Layers.ReLU(Temp); if (Step != null) { switch (this.Depth) { case EncoderType.Conv3: { Step(100f / 12f); break; } case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } Temp = Layers.MaxPool2D(Temp); if (Step != null) { switch (this.Depth) { case EncoderType.Conv3: { Step(100f / 12f); break; } case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv3_1_Weights, this.Data.Conv3_1_Biases); if (Step != null) { switch (this.Depth) { case EncoderType.Conv3: { Step(100f / 12f); break; } case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } Temp = Layers.ReLU(Temp); if (Step != null) { switch (this.Depth) { case EncoderType.Conv3: { Step(100f / 12f); break; } case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } } if ((this.Depth == EncoderType.Conv4) || (this.Depth == EncoderType.Conv5)) { Temp = Layers.Conv2D3x3(Temp, this.Data.Conv3_2_Weights, this.Data.Conv3_2_Biases); if (Step != null) { switch (this.Depth) { case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } Temp = Layers.ReLU(Temp); if (Step != null) { switch (this.Depth) { case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv3_3_Weights, this.Data.Conv3_3_Biases); if (Step != null) { switch (this.Depth) { case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } Temp = Layers.ReLU(Temp); if (Step != null) { switch (this.Depth) { case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv3_4_Weights, this.Data.Conv3_4_Biases); if (Step != null) { switch (this.Depth) { case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } Temp = Layers.ReLU(Temp); if (Step != null) { switch (this.Depth) { case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } Temp = Layers.MaxPool2D(Temp); if (Step != null) { switch (this.Depth) { case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv4_1_Weights, this.Data.Conv4_1_Biases); if (Step != null) { switch (this.Depth) { case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } Temp = Layers.ReLU(Temp); if (Step != null) { switch (this.Depth) { case EncoderType.Conv4: { Step(100f / 21f); break; } case EncoderType.Conv5: { Step(100f / 30f); break; } } } } if (this.Depth == EncoderType.Conv5) { Temp = Layers.Conv2D3x3(Temp, this.Data.Conv4_2_Weights, this.Data.Conv4_2_Biases); if (Step != null) { Step(100f / 30f); } Temp = Layers.ReLU(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv4_3_Weights, this.Data.Conv4_3_Biases); if (Step != null) { Step(100f / 30f); } Temp = Layers.ReLU(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv4_4_Weights, this.Data.Conv4_4_Biases); if (Step != null) { Step(100f / 30f); } Temp = Layers.ReLU(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.MaxPool2D(Temp); if (Step != null) { Step(100f / 30f); } Temp = Layers.Conv2D3x3(Temp, this.Data.Conv5_1_Weights, this.Data.Conv5_1_Biases); if (Step != null) { Step(100f / 30f); } Temp = Layers.ReLU(Temp); if (Step != null) { Step(100f / 30f); } } return(Temp); }