public static NeuralLayeredNetwork Pad(this NeuralLayeredNetwork network, int paddingSize) { network.AddLayer(new ZeroPaddingLayer(paddingSize)); return(network); }
public static NeuralLayeredNetwork Conv(this NeuralLayeredNetwork network, int filtersCount, int kernelSize, int stride, IWeightsInitializer initializer) { network.AddLayer(new ConvolutionLayer(filtersCount, kernelSize, stride, initializer)); return(network); }
public static NeuralLayeredNetwork Sigmoid(this NeuralLayeredNetwork network) { network.AddLayer(new ActivationLayer(new Sigmoid())); return(network); }
public static NeuralLayeredNetwork Tanh(this NeuralLayeredNetwork network) { network.AddLayer(new ActivationLayer(new Tanh())); return(network); }
public static NeuralLayeredNetwork Softmax(this NeuralLayeredNetwork network) { network.AddLayer(new Softmax()); return(network); }
public static NeuralLayeredNetwork Fully(this NeuralLayeredNetwork network, int neuronsCount) { network.AddLayer(new FullyConnectedLayer(neuronsCount)); return(network); }
public static NeuralLayeredNetwork Fully(this NeuralLayeredNetwork network, int neuronsCount, IWeightsInitializer initializer) { network.AddLayer(new FullyConnectedLayer(neuronsCount, initializer)); return(network); }
public static NeuralLayeredNetwork Flatten(this NeuralLayeredNetwork network) { network.AddLayer(new FlattenLayer()); return(network); }
public static NeuralLayeredNetwork MaxPool(this NeuralLayeredNetwork network, int poolSize, int stride) { network.AddLayer(new PoolingLayer(poolSize, stride)); return(network); }