public void MeanSquaredRandomTest()
        {
            Python.Initialize();
            Chainer.Initialize();

            int batchCount = Mother.Dice.Next(1, 5);
            int ch         = Mother.Dice.Next(1, 5);
            int width      = Mother.Dice.Next(1, 16);
            int height     = Mother.Dice.Next(1, 16);

            Real[,,,] inputA = (Real[, , , ])Initializer.GetRealNdArray(new[] { batchCount, ch, height, width });
            Real[,,,] inputB = (Real[, , , ])Initializer.GetRealNdArray(new[] { batchCount, ch, height, width });

            for (int i = 0; i < inputB.GetLength(0); i++)
            {
                for (int j = 0; j < inputB.GetLength(1); j++)
                {
                    for (int k = 0; k < inputB.GetLength(2); k++)
                    {
                        for (int l = 0; l < inputB.GetLength(3); l++)
                        {
                            inputB[i, j, k, l] *= 3.1415;
                        }
                    }
                }
            }

            //chainer
            NChainer.MeanSquaredError <Real> cMeanSquaredError = new NChainer.MeanSquaredError <Real>();

            Variable <Real> cX = new Variable <Real>(Real.ToBaseNdArray(inputA));
            Variable <Real> cY = new Variable <Real>(Real.ToBaseNdArray(inputB));

            Variable <Real> cZ = cMeanSquaredError.Forward(cX, cY);

            cZ.Backward();

            Real[] cXgrad = Real.ToRealArray((Real[, , , ])cX.Grad);

            //KelpNet
            KelpNet.MeanSquaredError meanSquaredError = new KelpNet.MeanSquaredError();

            NdArray x = new NdArray(Real.ToRealArray(inputA), new[] { ch, height, width }, batchCount);
            NdArray y = new NdArray(Real.ToRealArray(inputB), new[] { ch, height, width }, batchCount);

            //KelpNetはBackwaward側のみEvaluateで実行される
            NdArray z = meanSquaredError.Evaluate(x, y);


            //許容範囲を算出(内部の割引順が違うため誤差が大きい)
            double delta = 0.001;

            //Loss
            Assert.AreEqual(cZ.Data[0], z.Data[0], delta);

            //x.grad
            Assert.AreEqual(cXgrad.Length, x.Grad.Length);
            for (int i = 0; i < x.Grad.Length; i++)
            {
                Assert.AreEqual(cXgrad[i], x.Grad[i], delta);
            }
        }
예제 #2
0
        public void MeanSquaredRandomTest()
        {
            Python.Initialize();
            Chainer.Initialize();

            int batchCount = Mother.Dice.Next(1, 5);
            int ch         = Mother.Dice.Next(1, 5);
            int width      = Mother.Dice.Next(1, 16);
            int height     = Mother.Dice.Next(1, 16);

            Real[,,,] inputA = Initializer.GetRandomValues <Real[, , , ]>(batchCount, ch, height, width);
            Real[,,,] inputB = Initializer.GetRandomValues <Real[, , , ]>(batchCount, ch, height, width);

            for (int i = 0; i < inputB.GetLength(0); i++)
            {
                for (int j = 0; j < inputB.GetLength(1); j++)
                {
                    for (int k = 0; k < inputB.GetLength(2); k++)
                    {
                        for (int l = 0; l < inputB.GetLength(3); l++)
                        {
                            inputB[i, j, k, l] *= (Real)3.1415f;
                        }
                    }
                }
            }

            //chainer
            NChainer.MeanSquaredError <Real> cMeanSquaredError = new NChainer.MeanSquaredError <Real>();

            Variable <Real> cX = new Variable <Real>(inputA);
            Variable <Real> cY = new Variable <Real>(inputB);

            Variable <Real> cZ = cMeanSquaredError.Forward(cX, cY);

            cZ.Backward();

            Real[] cXgrad = ((Real[, , , ])cX.Grad).Flatten();

            //KelpNet
            KelpNet.MeanSquaredError <Real> meanSquaredError = new KelpNet.MeanSquaredError <Real>();

            NdArray <Real> x = new NdArray <Real>(inputA, asBatch: true);
            NdArray <Real> y = new NdArray <Real>(inputB, asBatch: true);

            //KelpNetはBackwaward側のみEvaluateで実行される
            NdArray <Real> z = meanSquaredError.Evaluate(x, y);


            //許容範囲を算出(内部の割引順が違うため誤差が大きい)
            Real delta = 0.001f;

            //Loss
            Assert.AreEqual(cZ.Data[0], z.Data[0], delta);

            //x.grad
            Assert.AreEqual(cXgrad.Length, x.Grad.Length);
            for (int i = 0; i < x.Grad.Length; i++)
            {
                Assert.AreEqual(cXgrad[i], x.Grad[i], delta);
            }
        }