private static bool IsSquare(uint[] x) { uint[] t1 = Nat224.Create(); uint[] t2 = Nat224.Create(); Nat224.Copy(x, t1); for (int i = 0; i < 7; ++i) { Nat224.Copy(t1, t2); SecP224R1Field.SquareN(t1, 1 << i, t1); SecP224R1Field.Multiply(t1, t2, t1); } SecP224R1Field.SquareN(t1, 95, t1); return(Nat224.IsOne(t1)); }
/** * return a sqrt root - the routine verifies that the calculation returns the right value - if * none exists it returns null. */ public override ECFieldElement Sqrt() { /* * Q == 8m + 5, so we use Pocklington's method for this case. * * First, raise this element to the exponent 2^221 - 2^29 - 2^9 - 2^8 - 2^6 - 2^4 - 2^1 (i.e. m + 1) * * Breaking up the exponent's binary representation into "repunits", we get: * { 191 1s } { 1 0s } { 19 1s } { 2 0s } { 1 1s } { 1 0s} { 1 1s } { 1 0s} { 3 1s } { 1 0s} * * Therefore we need an addition chain containing 1, 3, 19, 191 (the lengths of the repunits) * We use: [1], 2, [3], 4, 8, 11, [19], 23, 42, 84, 107, [191] */ uint[] x1 = this.x; if (Nat224.IsZero(x1) || Nat224.IsOne(x1)) { return(this); } uint[] x2 = Nat224.Create(); SecP224K1Field.Square(x1, x2); SecP224K1Field.Multiply(x2, x1, x2); uint[] x3 = x2; SecP224K1Field.Square(x2, x3); SecP224K1Field.Multiply(x3, x1, x3); uint[] x4 = Nat224.Create(); SecP224K1Field.Square(x3, x4); SecP224K1Field.Multiply(x4, x1, x4); uint[] x8 = Nat224.Create(); SecP224K1Field.SquareN(x4, 4, x8); SecP224K1Field.Multiply(x8, x4, x8); uint[] x11 = Nat224.Create(); SecP224K1Field.SquareN(x8, 3, x11); SecP224K1Field.Multiply(x11, x3, x11); uint[] x19 = x11; SecP224K1Field.SquareN(x11, 8, x19); SecP224K1Field.Multiply(x19, x8, x19); uint[] x23 = x8; SecP224K1Field.SquareN(x19, 4, x23); SecP224K1Field.Multiply(x23, x4, x23); uint[] x42 = x4; SecP224K1Field.SquareN(x23, 19, x42); SecP224K1Field.Multiply(x42, x19, x42); uint[] x84 = Nat224.Create(); SecP224K1Field.SquareN(x42, 42, x84); SecP224K1Field.Multiply(x84, x42, x84); uint[] x107 = x42; SecP224K1Field.SquareN(x84, 23, x107); SecP224K1Field.Multiply(x107, x23, x107); uint[] x191 = x23; SecP224K1Field.SquareN(x107, 84, x191); SecP224K1Field.Multiply(x191, x84, x191); uint[] t1 = x191; SecP224K1Field.SquareN(t1, 20, t1); SecP224K1Field.Multiply(t1, x19, t1); SecP224K1Field.SquareN(t1, 3, t1); SecP224K1Field.Multiply(t1, x1, t1); SecP224K1Field.SquareN(t1, 2, t1); SecP224K1Field.Multiply(t1, x1, t1); SecP224K1Field.SquareN(t1, 4, t1); SecP224K1Field.Multiply(t1, x3, t1); SecP224K1Field.Square(t1, t1); uint[] t2 = x84; SecP224K1Field.Square(t1, t2); if (Nat224.Eq(x1, t2)) { return(new SecP224K1FieldElement(t1)); } /* * If the first guess is incorrect, we multiply by a precomputed power of 2 to get the second guess, * which is ((4x)^(m + 1))/2 mod Q */ SecP224K1Field.Multiply(t1, PRECOMP_POW2, t1); SecP224K1Field.Square(t1, t2); if (Nat224.Eq(x1, t2)) { return(new SecP224K1FieldElement(t1)); } return(null); }