Train() 공개 메소드

public Train ( ) : void
리턴 void
예제 #1
0
 ///
 public override void Train()
 {
     baseline_predictor.Train();
     InitModel();
     if (correlation is IBinaryDataCorrelationMatrix)
     {
         ((IBinaryDataCorrelationMatrix)correlation).ComputeCorrelations(BinaryDataMatrix);
     }
     else
     {
         ((IRatingCorrelationMatrix)correlation).ComputeCorrelations(Ratings, Entity);
     }
 }
        ///
        public override void Train()
        {
            // init factor matrices
            user_factors = new Matrix <float>(MaxUserID + 1, NumFactors);
            item_factors = new Matrix <float>(MaxItemID + 1, NumFactors);

            // init+train global effects model
            global_effects.Ratings = ratings;
            global_effects.Train();

            // learn model parameters
            num_learned_factors = 0;
            for (int i = 0; i < NumIter; i++)
            {
                Iterate();
            }
        }
예제 #3
0
    public static void Main(string[] args)
    {
        // load the data
        var user_mapping = new EntityMapping();
        var item_mapping = new EntityMapping();
        var training_data = MyMediaLite.IO.RatingPrediction.Read(args[0], user_mapping, item_mapping);
        var test_data = MyMediaLite.IO.RatingPrediction.Read(args[1], user_mapping, item_mapping);

        // set up the recommender
        var recommender = new UserItemBaseline();
        recommender.Ratings = training_data;
        recommender.Train();

        // measure the accuracy on the test data set
        var results = RatingEval.Evaluate(recommender, test_data);
        Console.WriteLine("RMSE={0} MAE={1}", results["RMSE"], results["MAE"]);

        // make a prediction for a certain user and item
        Console.WriteLine(recommender.Predict(user_mapping.ToInternalID(1), item_mapping.ToInternalID(1)));
    }
예제 #4
0
	public static void Main(string[] args)
	{
		// load the data
		var training_data = RatingData.Read(args[0]);
		var test_data = RatingData.Read(args[1]);

		// set up the recommender
		var recommender = new UserItemBaseline();
		recommender.Ratings = training_data;
		recommender.Train();

		// measure the accuracy on the test data set
		var results = recommender.Evaluate(test_data);
		Console.WriteLine("RMSE={0} MAE={1}", results["RMSE"], results["MAE"]);
		Console.WriteLine(results);

		// make a prediction for a certain user and item
		Console.WriteLine(recommender.Predict(1, 1));
		
		var bmf = new BiasedMatrixFactorization {Ratings = training_data};
		Console.WriteLine(bmf.DoCrossValidation());
	}
예제 #5
0
        ///
        public override void Train()
        {
            // init factor matrices
            user_factors = new Matrix <double>(Ratings.MaxUserID + 1, NumFactors);
            item_factors = new Matrix <double>(Ratings.MaxItemID + 1, NumFactors);

            // init+train global effects model
            global_effects.Ratings = Ratings;
            global_effects.Train();

            global_bias = Ratings.Average;

            // initialize learning data structure
            residuals = new double[Ratings.Count];

            // learn model parameters
            num_learned_factors = 0;
            for (int i = 0; i < NumIter; i++)
            {
                Iterate();
            }
        }