static public CvMat BGRtoHueCV(CvMat input) { CvMat hsl = MatOps.ConvertChannels(input, MatrixType.U8C3, ColorConversion.BgrToHsv_Full); CvMat hue = MatOps.CopySize(input, MatrixType.U8C1); //CvMat lum = hue.EmptyClone(); //hsl.Split( hue, null, lum, null ); hsl.Split(hue, null, null, null); return(hue); }
// => hue and normalize, if null, may be created and assigned // <= ROI private CvMat detectROI(CvMat input, ref CvMat hue, ref CvMat normalize) { // TODO : Like I said above, if I get the minimum/maximum values, I have an accurate lowerBound/upperBound pair to work with!!! CvMat roi; CvScalar lowerBound; CvScalar upperBound; // IDEA 3: // Determine if I should check for "features" in the "thresholded" image, or in a cropped grayscale version of the original one!! // For now, lets search the thresholded one... if (boxEstimationType == BoxEstimationType.HUE) { roi = MatOps.CopySize(input, MatrixType.U8C1); lowerBound = boxEstimatedValue - floodHueTolerance / 1; // TODO : this should be +-(MAX VALUE) upperBound = boxEstimatedValue + floodHueTolerance / 1; if (hue == null) { hue = MatOps.BGRtoHue(input); } hue.InRangeS(lowerBound, upperBound, roi); } else if (boxEstimationType == BoxEstimationType.NORMALIZE) { // TODO : must investigate, range doesn't return anything roi = MatOps.CopySize(input, MatrixType.U8C1); lowerBound = boxEstimatedValue - floodNormTolerance; upperBound = boxEstimatedValue + floodNormTolerance; if (normalize == null) { normalize = MatOps.MyNormalize(input); } normalize.InRangeS(lowerBound, upperBound, roi); } else { // Couldn't estimate either way? We are off to a bad start, but lets try to see if features can be extracted anyway. roi = MatOps.ConvertChannels(input); // we are already losing valuable info here!! } return(roi); }
// => inputMat MUST be 24/32 bit private CvMat processFrame(CvMat inputMat) { // return "inputMat" after lots. LOTS. Of processing width = inputMat.Cols; height = inputMat.Rows; // taking out 4% of the input's edges: sounds wrong #if false // I have no idea what on earth is the purpose of this: //CvMat temp2 = inputMat( new CvRect( inputMat.Cols / 25, inputMat.Cols / 25, inputMat.Cols - 2 * (inputMat.Cols / 25), inputMat.Rows - 2 * (inputMat.Rows / 25) ) ); //resize( temp2, temp2, inputMat.size() ); //temp2.copyTo( inputMat ); int borderX = inputMat.Cols / 25; // 4% of original int borderY = inputMat.Rows / 25; CvRect roi = new CvRect(borderX, borderY, inputMat.Cols - 2 * borderX, inputMat.Rows - 2 * borderY); CvMat temp2 = inputMat.GetSubRect(out temp2, roi); // stupid to pass "out temp2"? inputMat = temp2; // =TODO : What? temp2.Copy( inputMat ); // is it really required to remove 4% of the input image's edges? #endif CvMat inputMat_grey; { // TODO : looks like a waste to make two conversions from inputMat to _grey, instead of 1 // since OpenCV doesn't support it, it could be made manually CvMat inputMat_grey8 = MatOps.ConvertChannels(inputMat); inputMat_grey = MatOps.ConvertElements(inputMat_grey8, MatrixType.F32C1, 1.0 / 255.0); } // NOTE : IBO seems to give good contrast with certain images, but with bbox7, it is just disastrous. //MatOps.NewWindowShow( inputMat_grey ); //inputMat_grey = Filters.IBO( inputMat_grey ); // inputMat_grey = 32f //MatOps.NewWindowShow( inputMat_grey ); inputMat_grey = MatOps.ConvertElements(inputMat_grey, MatrixType.U8C1, 255); // inputMat_grey = 8u // was: SLOW : Filters.ContrastEnhancement( inputMat_grey ); // NOTE : not needed AFTER IBO // NOTE : Contrast Enhancement2 may NOT be needed AT ALL, at this point at least, ANYWAY!!! Filters.ContrastEnhancement2(inputMat_grey); // NOTE : certainly NOT needed AFTER IBO MatOps.NewWindowShow(inputMat_grey); // mask passed originally in method below was all white, so I optimized it out. Passing the number of pixels was also dumb-o. double thresh = Filters.NeighborhoodValleyEmphasis(inputMat_grey); Cv.Threshold(inputMat_grey, inputMat_grey, thresh, 255, ThresholdType.BinaryInv); IplConvKernel element = new IplConvKernel(3, 3, 1, 1, ElementShape.Cross); Cv.Erode(inputMat_grey, inputMat_grey, element); Cv.Dilate(inputMat_grey, inputMat_grey, element); MatOps.NewWindowShow(inputMat_grey); // TODO : check if check is required if (inputMat_grey.ElemType != MatrixType.U8C1) { inputMat_grey = MatOps.ConvertElements(inputMat_grey, MatrixType.U8C1, 255.0); } // ======= // is this just a test? CvPoint[] newPtV = Filters.DistillContours(inputMat_grey, 5, Const.PointZero); CvMat imageDest; using (CvMemStorage storage = new CvMemStorage()) { CvSeq <CvPoint> updateContours = CvSeq <CvPoint> .FromArray(newPtV, SeqType.Contour, storage); imageDest = new CvMat(inputMat.Rows, inputMat.Cols, MatrixType.U8C1); Cv.DrawContours(imageDest, updateContours, Const.ScalarWhite, 0, 100, 16); } // ======= kawane(newPtV); // updates thresholdDist, minMaskY, final4P //*******************************************set a greater contour for estimation of the missing points*******************************// // ======= newPtV = Filters.DistillContours(inputMat_grey, 100, Const.PointZero); using (CvMemStorage storage = new CvMemStorage()) { CvSeq <CvPoint> updateContours = CvSeq <CvPoint> .FromArray(newPtV, SeqType.Contour, storage); imageDest = new CvMat(inputMat.Rows, inputMat.Cols, MatrixType.U8C1); Cv.DrawContours(imageDest, updateContours, Const.ScalarWhite, 0, 100, 1, LineType.AntiAlias); } // ======= CvMat mask1 = new CvMat(inputMat.Rows, inputMat.Cols, MatrixType.U8C1, 0); Cv.FillConvexPoly(mask1, newPtV, Const.ScalarWhite, 0, 0); temp = MatOps.ConvertChannels(inputMat); temp.Copy(imageDest, mask1); Cv.Canny(imageDest, imageDest, 150, 300, ApertureSize.Size3); IplConvKernel element2 = new IplConvKernel(3, 3, 1, 1, ElementShape.Rect); Cv.Dilate(imageDest, imageDest, element2); Cv.Erode(imageDest, imageDest, element2); CvLineSegmentPoint[] lines = Cv2.HoughLinesP(new Mat(imageDest), 1, Cv.PI / 180 /*NOTE : 1 degree angle*/, 50, 50, 50); // TODO : those 50s..? extendLines(lines, 350); // TODO : This idea sounds arbitary? And why 350? At least some percentage? // draw extended lines for (int i = 0; i < lines.Length; ++i) { CvLineSegmentPoint l = lines[i]; Cv.Line(imageDest, l.P1, l.P2, Const.ScalarWhite, 1, LineType.AntiAlias); } Cv.Dilate(imageDest, imageDest, element2); // TODO : FIX : Dilate again?! // another huge function here... fourPoints(lines); //////////// //********************************************************************* replace estimate points with mask corners ********// if (oldPt.Count != 0) { //** // BEWARE : great use of the English language following right below: // test for each and every one of the last slice delete each one of all the revisited of the above and estimate for only the best the off topic adapt //** List <int> positions = new List <int>(final4P.Count); for (int i = 0; i < final4P.Count; ++i) { positions.Add(-1); // "initialize" positions[i] double distmin = 10000; for (int j = 0; j < oldPt.Count; ++j) { double distAB = PointOps.Norm(oldPt[j] - final4P[i]); if (distAB < distmin) { distmin = distAB; positions[i] = j; } } } int flagFrCounter = 0; for (int i = 0; i < final4P.Count; ++i) { double distA = PointOps.Norm(oldPt[positions[i]] - final4P[i]); //********************* threshold pou na orizei tin megisti perioxi gia anazitisi,alliws na krataei to proigoumeno simeio*******// if (distA < thresholdDist) //if(distA<80) { oldPt[positions[i]] = final4P[i]; --flagFrCounter; } ++flagFrCounter; } if (reset) { numFrames = 0; oldPt.Clear(); final4P.Clear(); } } //pointsb[0]=thresholdDist; //****************************************************************************// for (int i = 0; i < oldPt.Count; ++i) { Cv.Circle(temp, oldPt[i], 2, Const.ScalarRed, 3); } MatOps.Convert8To24(temp).Copy(inputMat); //MatOps.ConvertChannels( temp, ColorConversion.GrayToBgr ).Copy( inputMat ); //temp.Copy( inputMat ); //******************************************************OVERLAY IMAGE***********************************************////// if (oldPt.Count == 0) { return(inputMat); // end of line } CvMat black2; if (overlay != null) { black2 = overlay.Clone(); //=imread("cubes.jpg"); Cv.Resize(black2, inputMat, Interpolation.NearestNeighbor); // TODO : check if interpolation type is appropriate } else { black2 = new CvMat(inputMat.Rows, inputMat.Cols, MatrixType.U8C3); } List <CvPoint> tempPoint = new List <CvPoint>(4); //vector<Point> tempPoint; int pp = 0; // BEWARE : the guy is copy/pasting needlessly? int mini = 1000000; for (int i = 0; i < oldPt.Count; ++i) { if (oldPt[i].Y < mini) { mini = oldPt[i].Y; pp = i; } } tempPoint.Add(oldPt[pp]); mini = 1000000; for (int i = 0; i < oldPt.Count; ++i) { if (oldPt[i].Y < mini && oldPt[i] != tempPoint[0]) { mini = oldPt[i].Y; pp = i; } } tempPoint.Add(oldPt[pp]); mini = 1000000; for (int i = 0; i < oldPt.Count; ++i) { int tempmini = Math.Abs(oldPt[i].X - tempPoint[1].X); if (tempmini < mini && oldPt[i] != tempPoint[0] && oldPt[i] != tempPoint[1]) { mini = tempmini; pp = i; } } tempPoint.Add(oldPt[pp]); for (int i = 0; i < oldPt.Count; ++i) { CvPoint pt = oldPt[i]; bool found = false; for (int j = 0; j < tempPoint.Count; ++j) { if (tempPoint[j] == pt) { found = true; break; } } if (!found) { tempPoint.Add(pt); } } // only keep up to 4 points List <CvPoint> co_ordinates = new List <CvPoint>(4); { int maxIndex = Math.Min(4, tempPoint.Count); for (int i = 0; i < maxIndex; ++i) { co_ordinates.Add(tempPoint[i]); } } // lost me... if (outputQuad[0] == outputQuad[2]) { { int maxIndex = Math.Min(4, tempPoint.Count); for (int i = 0; i < maxIndex; ++i) { outputQuad[i] = tempPoint[i]; } } } else { CvPoint2D32f rr; for (int i = 0; i < 4; ++i) { List <double> dist = new List <double>(tempPoint.Count); for (int j = 0; j < tempPoint.Count; ++j) { rr = tempPoint[j]; dist.Add(PointOps.Norm(outputQuad[i] - rr)); } double minimumDist = dist.Min(); int min_pos = Utils.FindIndex(dist, minimumDist); if (tempPoint.Count > 0) { outputQuad[i] = tempPoint[min_pos]; tempPoint.RemoveAt(min_pos); } } } // The 4 points where the mapping is to be done , from top-left in clockwise order inputQuad[0] = new CvPoint2D32f(0, 0); inputQuad[1] = new CvPoint2D32f(inputMat.Cols - 1, 0); inputQuad[2] = new CvPoint2D32f(inputMat.Cols - 1, inputMat.Rows - 1); inputQuad[3] = new CvPoint2D32f(0, inputMat.Rows - 1); //Input and Output Image; // Get the Perspective Transform Matrix i.e. lambda (2D warp transform) // Lambda Matrix CvMat lambda = Cv.GetPerspectiveTransform(inputQuad, outputQuad); // Apply this Perspective Transform to the src image // - get a "top-down" view of the supposedly box-y area Cv.WarpPerspective(black2, black2, lambda, Interpolation.Cubic, Const.ScalarBlack); // see nice explanation : http://www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/ CvMat maskOV = new CvMat(inputMat.Rows, inputMat.Cols, MatrixType.U8C1, Const.ScalarBlack); using (CvMemStorage storage = new CvMemStorage()) { CvSeq <CvPoint> updateContours = CvSeq <CvPoint> .FromArray(co_ordinates, SeqType.Contour, storage); imageDest = new CvMat(inputMat.Rows, inputMat.Cols, MatrixType.U8C1); Cv.DrawContours(maskOV, updateContours, Const.ScalarWhite, 0, 100, 16); //drawContours( maskOV, co_ordinates, 0, Scalar( 255 ), CV_FILLED, 8 ); } double alpha = 0.8; double beta = (1.0 - alpha); Cv.AddWeighted(black2, alpha, inputMat, beta, 0.0, black2); black2.Copy(inputMat, maskOV); return(inputMat); }