private static void PredictIssue() { ITransformer loadedModel = mL.Model.Load(modelPath, out var modelInputSchema); var issue = new GitHubIssue { Title = "Entity Framework crashes", Description = "When connecting to the database, EF is crashing" }; engine = mL.Model.CreatePredictionEngine <GitHubIssue, IssuePrediction>(loadedModel); var prediction = engine.Predict(issue); Console.WriteLine($"Single Prediction - Result: {prediction.Area}"); }
public static IEstimator <ITransformer> BuildAndTrainModel(IDataView trainingDataView, IEstimator <ITransformer> pipeline) { var trainingPipeline = pipeline.Append(mL.MulticlassClassification.Trainers.SdcaMaximumEntropy("Label", "Features")) .Append(mL.Transforms.Conversion.MapKeyToValue("PredictedLabel")); model = trainingPipeline.Fit(trainingDataView); engine = mL.Model.CreatePredictionEngine <GitHubIssue, IssuePrediction>(model); var issue = new GitHubIssue() { Title = "WebSockets communication is slow in my machine", Description = "The WebSockets communication used under the covers by SignalR looks like it is going slow in my development machine." }; var prediction = engine.Predict(issue); Console.WriteLine($"Single Prediction just-trained-model - Result: {prediction.Area}"); return(trainingPipeline); }
public static IEstimator <ITransformer> BuildAndTrainModel(IDataView trainingDataView, IEstimator <ITransformer> pipeline) { var trainingPipeline = pipeline.Append(_mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy("Label", "Features")) .Append(_mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel")); _trainedModel = trainingPipeline.Fit(trainingDataView); _predEngine = _mlContext.Model.CreatePredictionEngine <GitHubIssue, IssuePrediction> (_trainedModel); /* * Test Here */ GitHubIssue issue = new GitHubIssue() { Title = "WebSockets communication is slow in my machine", Description = "The WebSockets communication used under the covers by SignalR looks like is going slow in my development machine.." }; var prediction = _predEngine.Predict(issue); return(trainingPipeline); }
private static void PredictIssue() { ITransformer loadedModel = _mlContext.Model.Load(_modelPath, out var modelInputSchema); GitHubIssue singleIssue = new GitHubIssue() { Title = "Threads are failed", Description = "When i am use Threads my variables null take strong and not fail to crash." }; _predEngine = _mlContext.Model.CreatePredictionEngine <GitHubIssue, IssuePrediction> (loadedModel); var prediction = _predEngine.Predict(singleIssue); Console.WriteLine($"=============== Single Prediction - Result: {prediction.Area} ==============="); GitHubIssue secondIssue = new GitHubIssue() { Title = "Entity Framework crashes", Description = "When connecting to the database, EF is crashing" }; _predEngine = _mlContext.Model.CreatePredictionEngine <GitHubIssue, IssuePrediction> (loadedModel); var prediction2 = _predEngine.Predict(secondIssue); Console.WriteLine($"=============== Second Prediction - Result: {prediction2.Area} ==============="); }