예제 #1
0
        /// <summary>
        /// Generates all valid binary combinations of all binary configurations options in the given model
        /// </summary>
        /// <param name="vm">The variability model containing the binary options and their constraints.</param>
        /// <returns>Returns a list of configurations, in which a configuration is a list of SELECTED binary options (deselected options are not present)</returns>
        public List <List <BinaryOption> > generateAllVariantsFast(VariabilityModel vm)
        {
            List <List <BinaryOption> > configurations = new List <List <BinaryOption> >();
            List <CspTerm> variables = new List <CspTerm>();
            Dictionary <BinaryOption, CspTerm> elemToTerm = new Dictionary <BinaryOption, CspTerm>();
            Dictionary <CspTerm, BinaryOption> termToElem = new Dictionary <CspTerm, BinaryOption>();
            ConstraintSystem S = CSPsolver.getConstraintSystem(out variables, out elemToTerm, out termToElem, vm);

            ConstraintSolverSolution soln = S.Solve();


            while (soln.HasFoundSolution)
            {
                List <BinaryOption> config = new List <BinaryOption>();
                foreach (CspTerm cT in variables)
                {
                    if (soln.GetIntegerValue(cT) == 1)
                    {
                        config.Add(termToElem[cT]);
                    }
                }
                //THese should always be new configurations
                //  if(!Configuration.containsBinaryConfiguration(configurations, config))
                configurations.Add(config);

                soln.GetNext();
            }
            return(configurations);
        }
예제 #2
0
        /// <summary>
        /// The method aims at finding a configuration which is similar to the given configuration, but does not contain the optionToBeRemoved. If further options need to be removed from the given configuration, they are outputed in removedElements.
        /// Idea: Encode this as a CSP problem. We aim at finding a configuration that maximizes a goal. Each option of the given configuration gets a large value assigned. All other options of the variability model gets a negative value assigned.
        /// We will further create a boolean constraint that forbids selecting the optionToBeRemoved. Now, we find an optimal valid configuration.
        /// </summary>
        /// <param name="optionToBeRemoved">The binary configuration option that must not be part of the new configuration.</param>
        /// <param name="originalConfig">The configuration for which we want to find a similar one.</param>
        /// <param name="removedElements">If further options need to be removed from the given configuration to build a valid configuration, they are outputed in this list.</param>
        /// <param name="vm">The variability model containing all options and their constraints.</param>
        /// <returns>A configuration that is valid, similar to the original configuration and does not contain the optionToBeRemoved. Null if not configuration could be found.</returns>
        public List <BinaryOption> generateConfigWithoutOption(BinaryOption optionToBeRemoved, List <BinaryOption> originalConfig, out List <BinaryOption> removedElements, VariabilityModel vm)
        {
            List <CspTerm> variables = new List <CspTerm>();
            Dictionary <BinaryOption, CspTerm> elemToTerm = new Dictionary <BinaryOption, CspTerm>();
            Dictionary <CspTerm, BinaryOption> termToElem = new Dictionary <CspTerm, BinaryOption>();
            ConstraintSystem S = CSPsolver.getConstraintSystem(out variables, out elemToTerm, out termToElem, vm);

            removedElements = new List <BinaryOption>();

            //Forbid the selection of this configuration option
            CspTerm optionToRemove = elemToTerm[optionToBeRemoved];

            S.AddConstraints(S.Implies(S.True, S.Not(optionToRemove)));

            //Defining Goals
            CspTerm[] finalGoals = new CspTerm[variables.Count];
            int       r          = 0;

            foreach (var term in variables)
            {
                if (originalConfig.Contains(termToElem[term]))
                {
                    finalGoals[r] = term * -1000; //Since we minimize, we put a large negative value of an option that is within the original configuration to increase chances that the option gets selected again
                }
                else
                {
                    finalGoals[r] = variables[r] * 10000;//Positive number will lead to a small chance that an option gets selected when it is not in the original configuration
                }
                r++;
            }

            S.TryAddMinimizationGoals(S.Sum(finalGoals));

            ConstraintSolverSolution soln       = S.Solve();
            List <BinaryOption>      tempConfig = new List <BinaryOption>();

            if (soln.HasFoundSolution && soln.Quality == ConstraintSolverSolution.SolutionQuality.Optimal)
            {
                tempConfig.Clear();
                foreach (CspTerm cT in variables)
                {
                    if (soln.GetIntegerValue(cT) == 1)
                    {
                        tempConfig.Add(termToElem[cT]);
                    }
                }
                //Adding the options that have been removed from the original configuration
                foreach (var opt in originalConfig)
                {
                    if (!tempConfig.Contains(opt))
                    {
                        removedElements.Add(opt);
                    }
                }
                return(tempConfig);
            }

            return(null);
        }
예제 #3
0
        /// <summary>
        /// Checks whether the boolean selection is valid w.r.t. the variability model. Does not check for numeric options' correctness.
        /// </summary>
        /// <param name="config">The list of binary options that are SELECTED (only selected options must occur in the list).</param>
        /// <param name="vm">The variability model that represents the context of the configuration.</param>
        /// <param name="exact">Checks also the number of selected options such that it returns only true if exactly the given configuration is valid
        /// (e.g., if we need to select more features to get a valid config, it returns false if exact is set to true).
        /// <returns>True if it is a valid selection w.r.t. the VM, false otherwise</returns>
        public bool checkConfigurationSAT(List <BinaryOption> config, VariabilityModel vm, bool exact)
        {
            List <CspTerm> variables = new List <CspTerm>();
            Dictionary <BinaryOption, CspTerm> elemToTerm = new Dictionary <BinaryOption, CspTerm>();
            Dictionary <CspTerm, BinaryOption> termToElem = new Dictionary <CspTerm, BinaryOption>();
            ConstraintSystem S = CSPsolver.getConstraintSystem(out variables, out elemToTerm, out termToElem, vm);

            //Feature Selection
            foreach (BinaryOption binayOpt in elemToTerm.Keys)
            {
                CspTerm term = elemToTerm[binayOpt];
                if (config.Contains(binayOpt))
                {
                    S.AddConstraints(S.Implies(S.True, term));
                }
                else
                {
                    if (exact)
                    {
                        S.AddConstraints(S.Implies(S.True, S.Not(term)));
                    }
                }
            }

            ConstraintSolverSolution sol = S.Solve();

            if (sol.HasFoundSolution)
            {
                int count = 0;
                foreach (CspTerm cT in variables)
                {
                    if (sol.GetIntegerValue(cT) == 1)
                    {
                        count++;
                    }
                }
                //Needs testing TODO
                if (count != config.Count && exact == true)
                {
                    return(false);
                }
                return(true);
            }
            else
            {
                return(false);
            }
        }
예제 #4
0
        private List <List <BinaryOption> > generateTilSize(int i1, int size, int timeout, VariabilityModel vm)
        {
            var            foundSolutions = new List <List <BinaryOption> >();
            List <CspTerm> variables      = new List <CspTerm>();
            Dictionary <BinaryOption, CspTerm> elemToTerm = new Dictionary <BinaryOption, CspTerm>();
            Dictionary <CspTerm, BinaryOption> termToElem = new Dictionary <CspTerm, BinaryOption>();
            ConstraintSystem S = CSPsolver.getConstraintSystem(out variables, out elemToTerm, out termToElem, vm);

            CspTerm t = S.ExactlyMofN(i1, variables.ToArray());

            S.AddConstraints(new CspTerm[] { t });
            var csp = new ConstraintSolverParams
            {
                TimeLimitMilliSec = timeout * 1000,
            };
            ConstraintSolverSolution soln = S.Solve(csp);

            int counter = 0;

            while (soln.HasFoundSolution)
            {
                List <BinaryOption> tempConfig = (
                    from cT
                    in variables
                    where soln.GetIntegerValue(cT) == 1
                    select termToElem[cT]).ToList();

                if (tempConfig.Contains(null))
                {
                    tempConfig.Remove(null);
                }

                foundSolutions.Add(tempConfig);
                counter++;
                if (counter == size)
                {
                    break;
                }
                soln.GetNext();
            }
            //Console.WriteLine(i1 + "\t" + foundSolutions.Count);
            return(foundSolutions);
        }
예제 #5
0
        /* public List<List<string>> generateDimacsPseudoRandom(string[] lines,int features, int randomsize, BackgroundWorker worker)
         * {
         *   var cts = new CancellationTokenSource();
         *   var erglist = new List<List<string>>();
         *
         *   var tasks = new Task[features];
         *   var mylock = new object();
         *
         *   for (var i = 0; i < features; i++)
         *   {
         *       var i1 = i;
         *       tasks[i] = Task.Factory.StartNew(() =>
         *       {
         *           Console.WriteLine("Starting: " + i1);
         *           var sw = new Stopwatch();
         *           sw.Start();
         *           var result = generateDimacsSize(lines, i1, randomsize);
         *           sw.Stop();
         *           Console.WriteLine("Done: " + i1 + "\tDuration: " + sw.ElapsedMilliseconds + "\tResults: " + result.Count);
         *           return result;
         *
         *       }, cts.Token).ContinueWith(task =>
         *       {
         *           lock (mylock)
         *           {
         *
         *               erglist.AddRange(task.Result);
         *
         *               Console.WriteLine("Added results: " + i1 + "\tResults now: " + erglist.Count);
         *               counter++;
         *               //worker.ReportProgress((int)(counter * 100.0f / (double)features), erglist.Count);
         *           }
         *       });
         *
         *       if (Task.WaitAny(new[] { tasks[i] }, TimeSpan.FromMilliseconds(60 * 1000)) < 0)
         *       {
         *           cts.Cancel();
         *       }
         *   }
         *
         *   Task.WaitAll(tasks);
         *
         *   return erglist;
         * } */



        /// <summary>
        /// Simulates a simple method to get valid configurations of binary options of a variability model. The randomness is simulated by the modulu value.
        /// We take only the modulu'th configuration into the result set based on the CSP solvers output. If modulu is larger than the number of valid variants, the result set is empty.
        /// </summary>
        /// <param name="vm">The variability model containing the binary options and their constraints.</param>
        /// <param name="treshold">Maximum number of configurations</param>
        /// <param name="modulu">Each configuration that is % modulu == 0 is taken to the result set. Can be less than the maximal (i.e. threshold) specified number of configurations.</param>
        /// <returns>Returns a list of configurations, in which a configuration is a list of SELECTED binary options (deselected options are not present</returns>
        public List <List <BinaryOption> > generateRandomVariants(VariabilityModel vm, int treshold, int modulu)
        {
            List <CspTerm> variables = new List <CspTerm>();
            Dictionary <BinaryOption, CspTerm> elemToTerm = new Dictionary <BinaryOption, CspTerm>();
            Dictionary <CspTerm, BinaryOption> termToElem = new Dictionary <CspTerm, BinaryOption>();
            ConstraintSystem            S       = CSPsolver.getConstraintSystem(out variables, out elemToTerm, out termToElem, vm);
            List <List <BinaryOption> > erglist = new List <List <BinaryOption> >();
            ConstraintSolverSolution    soln    = S.Solve();
            int mod = 0;

            while (soln.HasFoundSolution)
            {
                mod++;
                if (mod % modulu != 0)
                {
                    soln.GetNext();
                    continue;
                }
                List <BinaryOption> tempConfig = new List <BinaryOption>();
                foreach (CspTerm cT in variables)
                {
                    if (soln.GetIntegerValue(cT) == 1)
                    {
                        tempConfig.Add(termToElem[cT]);
                    }
                }
                if (tempConfig.Contains(null))
                {
                    tempConfig.Remove(null);
                }
                erglist.Add(tempConfig);
                if (erglist.Count == treshold)
                {
                    break;
                }
                soln.GetNext();
            }
            return(erglist);
        }
예제 #6
0
        public bool checkDimacsSAT(List <string> tempConfig, string[] lines)
        {
            var            exact     = false;
            List <CspTerm> variables = new List <CspTerm>();
            Dictionary <string, CspTerm> elemToTerm = new Dictionary <string, CspTerm>();
            Dictionary <CspTerm, string> termToElem = new Dictionary <CspTerm, string>();


            var sys = CSPsolver.getDimacsCSystem(out variables, out elemToTerm, out termToElem, lines);

            foreach (var k in elemToTerm.Keys)
            {
                if (tempConfig.Contains(k))
                {
                    sys.Implies(sys.True, elemToTerm[k]);
                }
            }


            var sol = sys.Solve();

            return(sol.HasFoundSolution);
        }
예제 #7
0
        /// <summary>
        /// Based on a given (partial) configuration and a variability, we aim at finding all optimally maximal or minimal (in terms of selected binary options) configurations.
        /// </summary>
        /// <param name="config">The (partial) configuration which needs to be expaned to be valid.</param>
        /// <param name="vm">Variability model containing all options and their constraints.</param>
        /// <param name="minimize">If true, we search for the smallest (in terms of selected options) valid configuration. If false, we search for the largest one.</param>
        /// <param name="unwantedOptions">Binary options that we do not want to become part of the configuration. Might be part if there is no other valid configuration without them</param>
        /// <returns>A list of configurations that satisfies the VM and the goal (or null if there is none).</returns>
        public List <List <BinaryOption> > maximizeConfig(List <BinaryOption> config, VariabilityModel vm, bool minimize, List <BinaryOption> unwantedOptions)
        {
            List <CspTerm> variables = new List <CspTerm>();
            Dictionary <BinaryOption, CspTerm> elemToTerm = new Dictionary <BinaryOption, CspTerm>();
            Dictionary <CspTerm, BinaryOption> termToElem = new Dictionary <CspTerm, BinaryOption>();
            ConstraintSystem S = CSPsolver.getConstraintSystem(out variables, out elemToTerm, out termToElem, vm);

            //Feature Selection
            if (config != null)
            {
                foreach (BinaryOption binOpt in config)
                {
                    CspTerm term = elemToTerm[binOpt];
                    S.AddConstraints(S.Implies(S.True, term));
                }
            }
            //Defining Goals
            CspTerm[] finalGoals = new CspTerm[variables.Count];
            for (int r = 0; r < variables.Count; r++)
            {
                if (minimize == true)
                {
                    BinaryOption binOpt = termToElem[variables[r]];
                    if (unwantedOptions != null && (unwantedOptions.Contains(binOpt) && !config.Contains(binOpt)))
                    {
                        finalGoals[r] = variables[r] * 10000;
                    }
                    else
                    {
                        // Element is part of an altnerative Group  ... we want to select always the same option of the group, so we give different weights to the member of the group
                        //Functionality deactivated... todo needs further handling

                        /*if (binOpt.getAlternatives().Count != 0)
                         * {
                         *  finalGoals[r] = variables[r] * (binOpt.getID() * 10);
                         * }
                         * else
                         * {*/
                        finalGoals[r] = variables[r] * 1;
                        //}

                        // wenn in einer alternative, dann bekommt es einen wert nach seiner reihenfolge
                        // id mal 10
                    }
                }
                else
                {
                    finalGoals[r] = variables[r] * -1;   // dynamic cost map
                }
            }
            S.TryAddMinimizationGoals(S.Sum(finalGoals));

            ConstraintSolverSolution    soln          = S.Solve();
            List <string>               erg2          = new List <string>();
            List <BinaryOption>         tempConfig    = new List <BinaryOption>();
            List <List <BinaryOption> > resultConfigs = new List <List <BinaryOption> >();

            while (soln.HasFoundSolution && soln.Quality == ConstraintSolverSolution.SolutionQuality.Optimal)
            {
                tempConfig.Clear();
                foreach (CspTerm cT in variables)
                {
                    if (soln.GetIntegerValue(cT) == 1)
                    {
                        tempConfig.Add(termToElem[cT]);
                    }
                }
                if (minimize && tempConfig != null)
                {
                    resultConfigs.Add(tempConfig);
                    break;
                }
                if (!Configuration.containsBinaryConfiguration(resultConfigs, tempConfig))
                {
                    resultConfigs.Add(tempConfig);
                }
                soln.GetNext();
            }
            return(resultConfigs);
        }
예제 #8
0
        /// <summary>
        /// Based on a given (partial) configuration and a variability, we aim at finding the smallest (or largest if minimize == false) valid configuration that has all options.
        /// </summary>
        /// <param name="config">The (partial) configuration which needs to be expaned to be valid.</param>
        /// <param name="vm">Variability model containing all options and their constraints</param>
        /// <param name="minimize">If true, we search for the smallest (in terms of selected options) valid configuration. If false, we search for the largest one.</param>
        /// <param name="unWantedOptions">Binary options that we do not want to become part of the configuration. Might be part if there is no other valid configuration without them.</param>
        /// <returns>The valid configuration (or null if there is none) that satisfies the VM and the goal.</returns>
        public List <BinaryOption> minimizeConfig(List <BinaryOption> config, VariabilityModel vm, bool minimize, List <BinaryOption> unWantedFeatures)
        {
            List <CspTerm> variables = new List <CspTerm>();
            Dictionary <BinaryOption, CspTerm> elemToTerm = new Dictionary <BinaryOption, CspTerm>();
            Dictionary <CspTerm, BinaryOption> termToElem = new Dictionary <CspTerm, BinaryOption>();
            ConstraintSystem S = CSPsolver.getConstraintSystem(out variables, out elemToTerm, out termToElem, vm);


            //Feature Selection
            foreach (BinaryOption binOpt in config)
            {
                CspTerm term = elemToTerm[binOpt];
                S.AddConstraints(S.Implies(S.True, term));
            }

            //Defining Goals
            CspTerm[] finalGoals = new CspTerm[variables.Count];
            for (int r = 0; r < variables.Count; r++)
            {
                if (minimize == true)
                {
                    if (unWantedFeatures != null && (unWantedFeatures.Contains(termToElem[variables[r]]) && !config.Contains(termToElem[variables[r]])))
                    {
                        finalGoals[r] = variables[r] * 100;
                    }
                    else
                    {
                        finalGoals[r] = variables[r] * 1;
                    }
                }
                else
                {
                    finalGoals[r] = variables[r] * -1;   // dynamic cost map
                }
            }

            S.TryAddMinimizationGoals(S.Sum(finalGoals));

            ConstraintSolverSolution soln       = S.Solve();
            List <string>            erg2       = new List <string>();
            List <BinaryOption>      tempConfig = new List <BinaryOption>();

            while (soln.HasFoundSolution)
            {
                tempConfig.Clear();
                foreach (CspTerm cT in variables)
                {
                    if (soln.GetIntegerValue(cT) == 1)
                    {
                        tempConfig.Add(termToElem[cT]);
                    }
                }

                if (minimize && tempConfig != null)
                {
                    break;
                }
                soln.GetNext();
            }
            return(tempConfig);
        }
예제 #9
0
        public List <List <BinaryOption> > generateRandomVariantsUntilSeconds(VariabilityModel vm, int seconds,
                                                                              int treshold, int modulu)
        {
            List <List <BinaryOption> > erglist = new List <List <BinaryOption> >();
            var cts = new CancellationTokenSource();

            var task = Task.Factory.StartNew(() =>
            {
                #region task

                List <CspTerm> variables = new List <CspTerm>();
                Dictionary <BinaryOption, CspTerm> elemToTerm = new Dictionary <BinaryOption, CspTerm>();
                Dictionary <CspTerm, BinaryOption> termToElem = new Dictionary <CspTerm, BinaryOption>();
                ConstraintSystem S = CSPsolver.getConstraintSystem(out variables, out elemToTerm, out termToElem, vm);

                ConstraintSolverSolution soln = S.Solve();
                int mod = 0;
                while (soln.HasFoundSolution)
                {
                    if (cts.IsCancellationRequested)
                    {
                        return(erglist);
                    }
                    mod++;
                    if (mod % modulu != 0)
                    {
                        soln.GetNext();
                        continue;
                    }
                    List <BinaryOption> tempConfig = new List <BinaryOption>();
                    foreach (CspTerm cT in variables)
                    {
                        if (soln.GetIntegerValue(cT) == 1)
                        {
                            tempConfig.Add(termToElem[cT]);
                        }
                    }
                    if (tempConfig.Contains(null))
                    {
                        tempConfig.Remove(null);
                    }
                    erglist.Add(tempConfig);
                    if (erglist.Count == treshold)
                    {
                        break;
                    }
                    soln.GetNext();
                }
                return(erglist);

                #endregion
            }, cts.Token);

            if (Task.WaitAny(new[] { task }, TimeSpan.FromMilliseconds(seconds * 1000)) < 0)
            {
                Console.WriteLine("configsize: " + erglist.Count);
                cts.Cancel();
                return(erglist);
            }

            return(erglist);
        }