public Mapper(IHostEnvironment env, TensorFlowTransform parent, ISchema inputSchema) { Contracts.CheckValue(env, nameof(env)); _host = env.Register(nameof(Mapper)); _host.CheckValue(inputSchema, nameof(inputSchema)); _host.CheckValue(parent, nameof(parent)); _parent = parent; _schema = inputSchema; _inputColIndices = new int[_parent.Inputs.Length]; _isInputVector = new bool[_parent.Inputs.Length]; for (int i = 0; i < _parent.Inputs.Length; i++) { if (!inputSchema.TryGetColumnIndex(_parent.Inputs[i], out _inputColIndices[i])) { throw _host.Except($"Column {_parent.Inputs[i]} doesn't exist"); } var type = inputSchema.GetColumnType(_inputColIndices[i]); var expectedType = TensorFlowUtils.Tf2MlNetType(_parent.TFInputTypes[i]); if (type.ItemType != expectedType) { throw _host.ExceptSchemaMismatch(nameof(inputSchema), "input", _parent.Inputs[i], expectedType.ToString(), type.ToString()); } var originalShape = _parent.Graph.GetTensorShape(new TFOutput(_parent.Graph[_parent.Inputs[i]])); var shape = originalShape.ToIntArray().Skip(originalShape[0] == -1 ? BatchSize : 0); _isInputVector[i] = type.IsVector; if (type.AsVector.DimCount == 1) { int valCount = shape.Aggregate((x, y) => x * y); if (type.ValueCount != valCount) { throw _host.Except($"Input shape mismatch: Input '{_parent.Inputs[i]}' has shape {shape.ToString()}, but input data is of length {valCount}."); } } else if (shape.Select((dim, j) => dim != type.AsVector.GetDim(j)).Any(b => b)) { throw _host.Except($"Input shape mismatch: Input '{_parent.Inputs[i]}' has shape {shape.ToString()}, but input data is {type.AsVector.ToString()}."); } } }
public Mapper(IHostEnvironment env, TensorFlowTransform parent, ISchema inputSchema) { Contracts.CheckValue(env, nameof(env)); _host = env.Register(nameof(Mapper)); _host.CheckValue(inputSchema, nameof(inputSchema)); _host.CheckValue(parent, nameof(parent)); _parent = parent; _schema = inputSchema; _inputColIndices = new int[_parent.Inputs.Length]; _isInputVector = new bool[_parent.Inputs.Length]; _fullySpecifiedShapes = new TFShape[_parent.Inputs.Length]; for (int i = 0; i < _parent.Inputs.Length; i++) { if (!inputSchema.TryGetColumnIndex(_parent.Inputs[i], out _inputColIndices[i])) { throw _host.Except($"Column {_parent.Inputs[i]} doesn't exist"); } var type = inputSchema.GetColumnType(_inputColIndices[i]); _isInputVector[i] = type.IsVector; var expectedType = TensorFlowUtils.Tf2MlNetType(_parent.TFInputTypes[i]); if (type.ItemType != expectedType) { throw _host.ExceptSchemaMismatch(nameof(inputSchema), "input", _parent.Inputs[i], expectedType.ToString(), type.ToString()); } var originalShape = _parent.TFInputShapes[i]; var shape = originalShape.ToIntArray(); var colTypeDims = Enumerable.Range(0, type.AsVector.DimCount + 1).Select(d => d == 0 ? 1 : (long)type.AsVector.GetDim(d - 1)).ToArray(); if (shape == null) { _fullySpecifiedShapes[i] = new TFShape(colTypeDims); } else if (type.AsVector.DimCount == 1) { // If the column is one dimension we make sure that the total size of the TF shape matches. // Compute the total size of the known dimensions of the shape. int valCount = shape.Where(x => x > 0).Aggregate((x, y) => x * y); // The column length should be divisible by this, so that the other dimensions can be integral. if (type.ValueCount % valCount != 0) { throw Contracts.Except($"Input shape mismatch: Input '{_parent.Inputs[i]}' has shape {originalShape.ToString()}, but input data is of length {type.ValueCount}."); } // If the shape is multi-dimensional, we should be able to create the length of the vector by plugging // in a single value for the unknown shapes. E.g., if the shape is [?,?,3], then there should exist a value // d such that d*d*3 is equal to the length of the input column. var d = originalShape.NumDimensions > 2 ? Math.Pow(type.ValueCount / valCount, 1.0 / (originalShape.NumDimensions - 2)) : 1; if (originalShape.NumDimensions > 2 && d - (int)d != 0) { throw Contracts.Except($"Input shape mismatch: Input '{_parent.Inputs[i]}' has shape {originalShape.ToString()}, but input data is of length {type.ValueCount}."); } // Fill in the unknown dimensions. var l = new long[originalShape.NumDimensions]; for (int ishape = 0; ishape < originalShape.NumDimensions; ishape++) { l[ishape] = originalShape[ishape] == -1 ? (int)d : originalShape[ishape]; } _fullySpecifiedShapes[i] = new TFShape(l); } else { if (shape.Select((dim, j) => dim != -1 && dim != colTypeDims[j]).Any(b => b)) { throw Contracts.Except($"Input shape mismatch: Input '{_parent.Inputs[i]}' has shape {originalShape.ToString()}, but input data is {type.AsVector.ToString()}."); } // Fill in the unknown dimensions. var l = new long[originalShape.NumDimensions]; for (int ishape = 0; ishape < originalShape.NumDimensions; ishape++) { l[ishape] = originalShape[ishape] == -1 ? colTypeDims[ishape] : originalShape[ishape]; } _fullySpecifiedShapes[i] = new TFShape(l); } } }