public void Save(ModelSaveContext ctx) { if (_contractName == null) { throw _host.Except("Empty contract name for a transform: the transform cannot be saved"); } LambdaTransform.SaveCustomTransformer(_host, ctx, _contractName); }
GetImportanceMetricsMatrix( IHostEnvironment env, IPredictionTransformer <TModel> model, IDataView data, Func <TResult> resultInitializer, Func <IDataView, TMetric> evaluationFunc, Func <TMetric, TMetric, TMetric> deltaFunc, string features, int permutationCount, bool useFeatureWeightFilter = false, int?topExamples = null) { Contracts.CheckValue(env, nameof(env)); var host = env.Register(nameof(PermutationFeatureImportance <TModel, TMetric, TResult>)); host.CheckValue(model, nameof(model)); host.CheckValue(data, nameof(data)); host.CheckNonEmpty(features, nameof(features)); topExamples = topExamples ?? Utils.ArrayMaxSize; host.Check(topExamples > 0, "Provide how many examples to use (positive number) or set to null to use whole dataset."); VBuffer <ReadOnlyMemory <char> > slotNames = default; var metricsDelta = new List <TResult>(); using (var ch = host.Start("GetImportanceMetrics")) { ch.Trace("Scoring and evaluating baseline."); var baselineMetrics = evaluationFunc(model.Transform(data)); // Get slot names. var featuresColumn = data.Schema[features]; int numSlots = featuresColumn.Type.GetVectorSize(); data.Schema.TryGetColumnIndex(features, out int featuresColumnIndex); ch.Info("Number of slots: " + numSlots); if (data.Schema[featuresColumnIndex].HasSlotNames(numSlots)) { data.Schema[featuresColumnIndex].Annotations.GetValue(AnnotationUtils.Kinds.SlotNames, ref slotNames); } if (slotNames.Length != numSlots) { slotNames = VBufferUtils.CreateEmpty <ReadOnlyMemory <char> >(numSlots); } VBuffer <float> weights = default; var workingFeatureIndices = Enumerable.Range(0, numSlots).ToList(); int zeroWeightsCount = 0; // By default set to the number of all features available. var evaluatedFeaturesCount = numSlots; if (useFeatureWeightFilter) { var predictorWithWeights = model.Model as IPredictorWithFeatureWeights <Single>; if (predictorWithWeights != null) { predictorWithWeights.GetFeatureWeights(ref weights); const int maxReportedZeroFeatures = 10; StringBuilder msgFilteredOutFeatures = new StringBuilder("The following features have zero weight and will not be evaluated: \n \t"); var prefix = ""; foreach (var k in weights.Items(all: true)) { if (k.Value == 0) { zeroWeightsCount++; // Print info about first few features we're not going to evaluate. if (zeroWeightsCount <= maxReportedZeroFeatures) { msgFilteredOutFeatures.Append(prefix); msgFilteredOutFeatures.Append(GetSlotName(slotNames, k.Key)); prefix = ", "; } } else { workingFeatureIndices.Add(k.Key); } } // Old FastTree models has less weights than slots. if (weights.Length < numSlots) { ch.Warning( "Predictor had fewer features than slots. All unknown features will get default 0 weight."); zeroWeightsCount += numSlots - weights.Length; var indexes = weights.GetIndices().ToArray(); var values = weights.GetValues().ToArray(); var count = values.Length; weights = new VBuffer <float>(numSlots, count, values, indexes); } evaluatedFeaturesCount = workingFeatureIndices.Count; ch.Info("Number of zero weights: {0} out of {1}.", zeroWeightsCount, weights.Length); // Print what features have 0 weight if (zeroWeightsCount > 0) { if (zeroWeightsCount > maxReportedZeroFeatures) { msgFilteredOutFeatures.Append(string.Format("... (printing out {0} features here).\n Use 'Index' column in the report for info on what features are not evaluated.", maxReportedZeroFeatures)); } ch.Info(msgFilteredOutFeatures.ToString()); } } } if (workingFeatureIndices.Count == 0 && zeroWeightsCount == 0) { // Use all features otherwise. workingFeatureIndices.AddRange(Enumerable.Range(0, numSlots)); } if (zeroWeightsCount == numSlots) { ch.Warning("All features have 0 weight thus can not do thorough evaluation"); return(metricsDelta.ToImmutableArray()); } // Note: this will not work on the huge dataset. var maxSize = topExamples; List <float> initialfeatureValuesList = new List <float>(); // Cursor through the data to cache slot 0 values for the upcoming permutation. var valuesRowCount = 0; // REVIEW: Seems like if the labels are NaN, so that all metrics are NaN, this command will be useless. // In which case probably erroring out is probably the most useful thing. using (var cursor = data.GetRowCursor(featuresColumn)) { var featuresGetter = cursor.GetGetter <VBuffer <float> >(featuresColumn); var featuresBuffer = default(VBuffer <float>); while (initialfeatureValuesList.Count < maxSize && cursor.MoveNext()) { featuresGetter(ref featuresBuffer); initialfeatureValuesList.Add(featuresBuffer.GetItemOrDefault(workingFeatureIndices[0])); } valuesRowCount = initialfeatureValuesList.Count; } if (valuesRowCount > 0) { ch.Info("Detected {0} examples for evaluation.", valuesRowCount); } else { ch.Warning("Detected no examples for evaluation."); return(metricsDelta.ToImmutableArray()); } float[] featureValuesBuffer = initialfeatureValuesList.ToArray(); float[] nextValues = new float[valuesRowCount]; // Now iterate through all the working slots, do permutation and calc the delta of metrics. int processedCnt = 0; int nextFeatureIndex = 0; var shuffleRand = RandomUtils.Create(host.Rand.Next()); using (var pch = host.StartProgressChannel("Calculating Permutation Feature Importance")) { pch.SetHeader(new ProgressHeader("processed slots"), e => e.SetProgress(0, processedCnt)); foreach (var workingIndx in workingFeatureIndices) { // Index for the feature we will permute next. Needed to build in advance a buffer for the permutation. if (processedCnt < workingFeatureIndices.Count - 1) { nextFeatureIndex = workingFeatureIndices[processedCnt + 1]; } // Used for pre-caching the next feature int nextValuesIndex = 0; SchemaDefinition input = SchemaDefinition.Create(typeof(FeaturesBuffer)); Contracts.Assert(input.Count == 1); input[0].ColumnName = features; SchemaDefinition output = SchemaDefinition.Create(typeof(FeaturesBuffer)); Contracts.Assert(output.Count == 1); output[0].ColumnName = features; output[0].ColumnType = featuresColumn.Type; // Perform multiple permutations for one feature to build a confidence interval var metricsDeltaForFeature = resultInitializer(); for (int permutationIteration = 0; permutationIteration < permutationCount; permutationIteration++) { Utils.Shuffle <float>(shuffleRand, featureValuesBuffer); Action <FeaturesBuffer, FeaturesBuffer, PermuterState> permuter = (src, dst, state) => { src.Features.CopyTo(ref dst.Features); VBufferUtils.ApplyAt(ref dst.Features, workingIndx, (int ii, ref float d) => d = featureValuesBuffer[state.SampleIndex++]); // Is it time to pre-cache the next feature? if (permutationIteration == permutationCount - 1 && processedCnt < workingFeatureIndices.Count - 1) { // Fill out the featureValueBuffer for the next feature while updating the current feature // This is the reason I need PermuterState in LambdaTransform.CreateMap. nextValues[nextValuesIndex] = src.Features.GetItemOrDefault(nextFeatureIndex); if (nextValuesIndex < valuesRowCount - 1) { nextValuesIndex++; } } }; IDataView viewPermuted = LambdaTransform.CreateMap( host, data, permuter, null, input, output); if (valuesRowCount == topExamples) { viewPermuted = SkipTakeFilter.Create(host, new SkipTakeFilter.TakeOptions() { Count = valuesRowCount }, viewPermuted); } var metrics = evaluationFunc(model.Transform(viewPermuted)); var delta = deltaFunc(metrics, baselineMetrics); metricsDeltaForFeature.Add(delta); } // Add the metrics delta to the list metricsDelta.Add(metricsDeltaForFeature); // Swap values for next iteration of permutation. if (processedCnt < workingFeatureIndices.Count - 1) { Array.Clear(featureValuesBuffer, 0, featureValuesBuffer.Length); nextValues.CopyTo(featureValuesBuffer, 0); Array.Clear(nextValues, 0, nextValues.Length); } processedCnt++; } pch.Checkpoint(processedCnt, processedCnt); } } return(metricsDelta.ToImmutableArray()); }