/// <summary> /// Initializes a new instance of <see cref="LbfgsLogisticRegressionBinaryTrainer"/> /// </summary> internal LbfgsLogisticRegressionBinaryTrainer(IHostEnvironment env, Options options) : base(env, options, TrainerUtils.MakeBoolScalarLabel(options.LabelColumnName)) { _posWeight = 0; ShowTrainingStats = LbfgsTrainerOptions.ShowTrainingStatistics; }
private RandomizedPcaTrainer(IHostEnvironment env, Options options, string featureColumnName, string exampleWeightColumnName, int rank = 20, int oversampling = 20, bool center = true, int?seed = null) : base(Contracts.CheckRef(env, nameof(env)).Register(LoadNameValue), TrainerUtils.MakeR4VecFeature(featureColumnName), default, TrainerUtils.MakeR4ScalarWeightColumn(exampleWeightColumnName)) { // if the args are not null, we got here from maml, and the internal ctor. if (options != null) { _rank = options.Rank; _ensureZeroMean = options.EnsureZeroMean; _oversampling = options.Oversampling; _seed = options.Seed ?? Host.Rand.Next(); } else { _rank = rank; _ensureZeroMean = center; _oversampling = oversampling; _seed = seed ?? Host.Rand.Next(); } _featureColumn = featureColumnName; Host.CheckUserArg(_rank > 0, nameof(_rank), "Rank must be positive"); Host.CheckUserArg(_oversampling >= 0, nameof(_oversampling), "Oversampling must be non-negative"); }
/// <summary> /// Initializes a new instance of <see cref="PoissonRegression"/> /// </summary> internal PoissonRegression(IHostEnvironment env, Options options) : base(env, options, TrainerUtils.MakeR4ScalarColumn(options.LabelColumn)) { }
/// <summary> /// Initializes a new instance of <see cref="PoissonRegression"/> /// </summary> internal PoissonRegression(IHostEnvironment env, Arguments args) : base(env, args, TrainerUtils.MakeR4ScalarLabel(args.LabelColumn)) { }
internal AveragedPerceptronTrainer(IHostEnvironment env, Options options) : base(options, env, UserNameValue, TrainerUtils.MakeBoolScalarLabel(options.LabelColumnName)) { _args = options; LossFunction = _args.LossFunction ?? _args.LossFunctionFactory.CreateComponent(env); }
/// <summary> /// Initializes a new instance of <see cref="MultiClassNaiveBayesTrainer"/> /// </summary> internal MultiClassNaiveBayesTrainer(IHostEnvironment env, Options options) : base(Contracts.CheckRef(env, nameof(env)).Register(LoadName), TrainerUtils.MakeR4VecFeature(options.FeatureColumnName), TrainerUtils.MakeU4ScalarColumn(options.LabelColumnName)) { Host.CheckValue(options, nameof(options)); }
/// <summary> /// Initializes a new instance of <see cref="LogisticRegression"/> /// </summary> internal LogisticRegression(IHostEnvironment env, Options options) : base(env, options, TrainerUtils.MakeBoolScalarLabel(options.LabelColumn)) { _posWeight = 0; ShowTrainingStats = Args.ShowTrainingStats; }
internal OnlineGradientDescentTrainer(IHostEnvironment env, Options options) : base(options, env, UserNameValue, TrainerUtils.MakeR4ScalarColumn(options.LabelColumnName)) { LossFunction = options.LossFunction ?? options.LossFunctionFactory.CreateComponent(env); }
/// <summary> /// Initializes a new instance of <see cref="MulticlassLogisticRegression"/> /// </summary> internal MulticlassLogisticRegression(IHostEnvironment env, Options options) : base(env, options, TrainerUtils.MakeU4ScalarColumn(options.LabelColumn)) { ShowTrainingStats = Args.ShowTrainingStats; }
/// <summary> /// Initializes a new instance of <see cref="LogisticRegressionMulticlassClassificationTrainer"/> /// </summary> internal LogisticRegressionMulticlassClassificationTrainer(IHostEnvironment env, Options options) : base(env, options, TrainerUtils.MakeU4ScalarColumn(options.LabelColumnName)) { ShowTrainingStats = LbfgsTrainerOptions.ShowTrainingStatistics; }