/// <summary> /// LightGbm <see cref="BinaryClassificationContext"/> extension method. /// </summary> /// <param name="ctx">The <see cref="BinaryClassificationContext"/>.</param> /// <param name="label">The label column.</param> /// <param name="features">The features colum.</param> /// <param name="weights">The weights column.</param> /// <param name="numLeaves">The number of leaves to use.</param> /// <param name="numBoostRound">Number of iterations.</param> /// <param name="minDataPerLeaf">The minimal number of documents allowed in a leaf of the tree, out of the subsampled data.</param> /// <param name="learningRate">The learning rate.</param> /// <param name="advancedSettings">Algorithm advanced settings.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TTupleInShape, TTupleOutShape, TTransformer}.Fit(DataView{TTupleInShape})"/> method is called on the /// <see cref="Estimator{TTupleInShape, TTupleOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained. Note that this action cannot change the result in any way; /// it is only a way for the caller to be informed about what was learnt.</param> /// <returns>The set of output columns including in order the predicted binary classification score (which will range /// from negative to positive infinity), the calibrated prediction (from 0 to 1), and the predicted label.</returns> public static (Scalar <float> score, Scalar <float> probability, Scalar <bool> predictedLabel) LightGbm(this BinaryClassificationContext.BinaryClassificationTrainers ctx, Scalar <bool> label, Vector <float> features, Scalar <float> weights = null, int?numLeaves = null, int?minDataPerLeaf = null, double?learningRate = null, int numBoostRound = LightGbmArguments.Defaults.NumBoostRound, Action <LightGbmArguments> advancedSettings = null, Action <IPredictorWithFeatureWeights <float> > onFit = null) { LightGbmStaticsUtils.CheckUserValues(label, features, weights, numLeaves, minDataPerLeaf, learningRate, numBoostRound, advancedSettings, onFit); var rec = new TrainerEstimatorReconciler.BinaryClassifier( (env, labelName, featuresName, weightsName) => { var trainer = new LightGbmBinaryTrainer(env, labelName, featuresName, weightsName, numLeaves, minDataPerLeaf, learningRate, numBoostRound, advancedSettings); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } else { return(trainer); } }, label, features, weights); return(rec.Output); }
/// <summary> /// LightGbm <see cref="RegressionContext"/> extension method. /// </summary> /// <param name="ctx">The <see cref="RegressionContext"/>.</param> /// <param name="label">The label column.</param> /// <param name="features">The features colum.</param> /// <param name="weights">The weights column.</param> /// <param name="numLeaves">The number of leaves to use.</param> /// <param name="numBoostRound">Number of iterations.</param> /// <param name="minDataPerLeaf">The minimal number of documents allowed in a leaf of the tree, out of the subsampled data.</param> /// <param name="learningRate">The learning rate.</param> /// <param name="advancedSettings">Algorithm advanced settings.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TTupleInShape, TTupleOutShape, TTransformer}.Fit(DataView{TTupleInShape})"/> method is called on the /// <see cref="Estimator{TTupleInShape, TTupleOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained. Note that this action cannot change the result in any way; /// it is only a way for the caller to be informed about what was learnt.</param> /// <returns>The Score output column indicating the predicted value.</returns> public static Scalar <float> LightGbm(this RegressionContext.RegressionTrainers ctx, Scalar <float> label, Vector <float> features, Scalar <float> weights = null, int?numLeaves = null, int?minDataPerLeaf = null, double?learningRate = null, int numBoostRound = LightGbmArguments.Defaults.NumBoostRound, Action <LightGbmArguments> advancedSettings = null, Action <LightGbmRegressionPredictor> onFit = null) { LightGbmStaticsUtils.CheckUserValues(label, features, weights, numLeaves, minDataPerLeaf, learningRate, numBoostRound, advancedSettings, onFit); var rec = new TrainerEstimatorReconciler.Regression( (env, labelName, featuresName, weightsName) => { var trainer = new LightGbmRegressorTrainer(env, labelName, featuresName, weightsName, numLeaves, minDataPerLeaf, learningRate, numBoostRound, advancedSettings); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Score); }