/// <summary> /// Predict a target using a linear regression model trained with the SDCA trainer. /// </summary> /// <param name="label">The label, or dependent variable.</param> /// <param name="features">The features, or independent variables.</param> /// <param name="weights">The optional example weights.</param> /// <param name="l2Const">The L2 regularization hyperparameter.</param> /// <param name="l1Threshold">The L1 regularization hyperparameter. Higher values will tend to lead to more sparse model.</param> /// <param name="maxIterations">The maximum number of passes to perform over the data.</param> /// <param name="loss">The custom loss, if unspecified will be <see cref="SquaredLossSDCARegressionLossFunction"/>.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TTupleInShape, TTupleOutShape, TTransformer}.Fit(DataView{TTupleInShape})"/> method is called on the /// <see cref="Estimator{TTupleInShape, TTupleOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained. Note that this action cannot change the result in any way; it is only a way for the caller to /// be informed about what was learnt.</param> /// <returns>The predicted output.</returns> public static Scalar <float> PredictSdcaRegression(this Scalar <float> label, Vector <float> features, Scalar <float> weights = null, float?l2Const = null, float?l1Threshold = null, int?maxIterations = null, ISupportSdcaRegressionLoss loss = null, Action <LinearRegressionPredictor> onFit = null) { Contracts.CheckValue(label, nameof(label)); Contracts.CheckValue(features, nameof(features)); Contracts.CheckValueOrNull(weights); Contracts.CheckParam(!(l2Const < 0), nameof(l2Const), "Must not be negative"); Contracts.CheckParam(!(l1Threshold < 0), nameof(l1Threshold), "Must not be negative"); Contracts.CheckParam(!(maxIterations < 1), nameof(maxIterations), "Must be positive if specified"); Contracts.CheckValueOrNull(loss); Contracts.CheckValueOrNull(onFit); var args = new SdcaRegressionTrainer.Arguments() { L2Const = l2Const, L1Threshold = l1Threshold, MaxIterations = maxIterations }; if (loss != null) { args.LossFunction = new TrivialRegressionLossFactory(loss); } var rec = new TrainerEstimatorReconciler.Regression( (env, labelName, featuresName, weightsName) => { var trainer = new SdcaRegressionTrainer(env, args, featuresName, labelName, weightsName); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Score); }
public static CommonOutputs.RegressionOutput TrainRegression(IHostEnvironment env, SdcaRegressionTrainer.Arguments input) { Contracts.CheckValue(env, nameof(env)); var host = env.Register("TrainSDCA"); host.CheckValue(input, nameof(input)); EntryPointUtils.CheckInputArgs(host, input); return(LearnerEntryPointsUtils.Train <SdcaRegressionTrainer.Arguments, CommonOutputs.RegressionOutput>(host, input, () => new SdcaRegressionTrainer(host, input), () => LearnerEntryPointsUtils.FindColumn(host, input.TrainingData.Schema, input.LabelColumn))); }