/// <summary> /// Pop up a window for running examples, when compiled with .NET 4.6.1 or higher, then exit the application. Otherwise do nothing. /// </summary> public static void RunBrowser() // Must not be called "Run" { #if NETFULL InferenceEngine.Visualizer = new Compiler.Visualizers.WindowsVisualizer(); // Show all tutorials, in a browser IAlgorithm[] algs = InferenceEngine.GetBuiltInAlgorithms(); // Avoid max product in the examples browser, as none of the examples apply. List <IAlgorithm> algList = new List <IAlgorithm>(algs); algList.RemoveAll(alg => alg is MaxProductBeliefPropagation); ExamplesViewer tview = new ExamplesViewer(typeof(ExamplesBrowser), algList.ToArray()); tview.RunBrowser(); Environment.Exit(0); #endif }
internal GUITextWriter(ExamplesViewer view) { this.view = view; }
public static void Main() { Type tutorialClass = null; // ********** UNCOMMENT AND EDIT THIS LINE TO RUN A PARTICULAR TUTORIAL DIRECTLY ************* //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.FirstExample); //Choose one of the algorithms InferenceEngine.DefaultEngine.Algorithm = new ExpectationPropagation(); //InferenceEngine.DefaultEngine.Algorithm = new VariationalMessagePassing(); //InferenceEngine.DefaultEngine.Algorithm = new GibbsSampling(); //Options InferenceEngine.DefaultEngine.ShowProgress = true; InferenceEngine.DefaultEngine.ShowTimings = false; InferenceEngine.DefaultEngine.ShowMsl = false; InferenceEngine.DefaultEngine.ShowFactorGraph = false; InferenceEngine.DefaultEngine.ShowSchedule = false; #if NETCORE //Tutorials //Uncomment one of these lines to run a particular tutorial in console application tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.FirstExample); //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.TruncatedGaussian); //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.TruncatedGaussianEfficient); //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.LearningAGaussian); //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.LearningAGaussianWithRanges); //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.BayesPointMachineExample); //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.ClinicalTrial); //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.MixtureOfGaussians); //String tutorials //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.HelloStrings); //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.StringFormat); //Applications //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.BayesianPCA); //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.BugsRats); //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.ChessAnalysis); //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.ClickModel); //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.DifficultyAbility); //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.GaussianProcessClassifier); //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.MultinomialRegression); //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.RecommenderSystem); //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.StudentSkills); //tutorialClass = typeof(Microsoft.ML.Probabilistic.Tutorials.WetGrassSprinklerRain); #endif if (tutorialClass != null) { // Run the specified tutorial RunTutorial(tutorialClass); } #if NETFULL else { InferenceEngine.Visualizer = new WindowsVisualizer(); // Show all tutorials, in a browser IAlgorithm[] algs = InferenceEngine.GetBuiltInAlgorithms(); // Avoid max product in the examples browser, as none of the examples apply. List <IAlgorithm> algList = new List <IAlgorithm>(algs); algList.RemoveAll(alg => alg is MaxProductBeliefPropagation); ExamplesViewer tview = new ExamplesViewer(typeof(RunMe), algList.ToArray()); tview.RunBrowser(); } #endif }