Dictionary <string, IDataView> IEvaluator.Evaluate(RoleMappedData data) { data = new RoleMappedData(data.Data, GetInputColumnRoles(data.Schema, needStrat: true)); return(Evaluator.Evaluate(data)); }
public static IDataScorerTransform GetScorer(IPredictor predictor, RoleMappedData data, IHostEnvironment env, RoleMappedSchema trainSchema) { var sc = GetScorerComponentAndMapper(predictor, null, data.Schema, env, null, out var mapper); return(sc.CreateComponent(env, data.Data, mapper, trainSchema)); }
private FoldResult RunFold(int fold) { var host = GetHost(); host.Assert(0 <= fold && fold <= _numFolds); // REVIEW: Make channels buffered in multi-threaded environments. using (var ch = host.Start($"Fold {fold}")) { ch.Trace("Constructing trainer"); ITrainer trainer = _trainer.CreateComponent(host); // Train pipe. var trainFilter = new RangeFilter.Arguments(); trainFilter.Column = _splitColumn; trainFilter.Min = (Double)fold / _numFolds; trainFilter.Max = (Double)(fold + 1) / _numFolds; trainFilter.Complement = true; IDataView trainPipe = new RangeFilter(host, trainFilter, _inputDataView); trainPipe = new OpaqueDataView(trainPipe); var trainData = _createExamples(host, ch, trainPipe, trainer); // Test pipe. var testFilter = new RangeFilter.Arguments(); testFilter.Column = trainFilter.Column; testFilter.Min = trainFilter.Min; testFilter.Max = trainFilter.Max; ch.Assert(!testFilter.Complement); IDataView testPipe = new RangeFilter(host, testFilter, _inputDataView); testPipe = new OpaqueDataView(testPipe); var testData = _applyTransformsToTestData(host, ch, testPipe, trainData, trainPipe); // Validation pipe and examples. RoleMappedData validData = null; if (_getValidationDataView != null) { ch.Assert(_applyTransformsToValidationData != null); if (!trainer.Info.SupportsValidation) { ch.Warning("Trainer does not accept validation dataset."); } else { ch.Trace("Constructing the validation pipeline"); IDataView validLoader = _getValidationDataView(); var validPipe = ApplyTransformUtils.ApplyAllTransformsToData(host, _inputDataView, validLoader); validPipe = new OpaqueDataView(validPipe); validData = _applyTransformsToValidationData(host, ch, validPipe, trainData, trainPipe); } } // Train. var predictor = TrainUtils.Train(host, ch, trainData, trainer, validData, _calibrator, _maxCalibrationExamples, _cacheData, _inputPredictor); // Score. ch.Trace("Scoring and evaluating"); ch.Assert(_scorer == null || _scorer is ICommandLineComponentFactory, "CrossValidationCommand should only be used from the command line."); var bindable = ScoreUtils.GetSchemaBindableMapper(host, predictor, scorerFactorySettings: _scorer as ICommandLineComponentFactory); ch.AssertValue(bindable); var mapper = bindable.Bind(host, testData.Schema); var scorerComp = _scorer ?? ScoreUtils.GetScorerComponent(host, mapper); IDataScorerTransform scorePipe = scorerComp.CreateComponent(host, testData.Data, mapper, trainData.Schema); // Save per-fold model. string modelFileName = ConstructPerFoldName(_outputModelFile, fold); if (modelFileName != null && _loader != null) { using (var file = host.CreateOutputFile(modelFileName)) { var rmd = new RoleMappedData( CompositeDataLoader.ApplyTransform(host, _loader, null, null, (e, newSource) => ApplyTransformUtils.ApplyAllTransformsToData(e, trainData.Data, newSource)), trainData.Schema.GetColumnRoleNames()); TrainUtils.SaveModel(host, ch, file, predictor, rmd, _cmd); } } // Evaluate. var eval = _evaluator?.CreateComponent(host) ?? EvaluateUtils.GetEvaluator(host, scorePipe.Schema); // Note that this doesn't require the provided columns to exist (because of the "opt" parameter). // We don't normally expect the scorer to drop columns, but if it does, we should not require // all the columns in the test pipeline to still be present. var dataEval = new RoleMappedData(scorePipe, testData.Schema.GetColumnRoleNames(), opt: true); var dict = eval.Evaluate(dataEval); RoleMappedData perInstance = null; if (_savePerInstance) { var perInst = eval.GetPerInstanceMetrics(dataEval); perInstance = new RoleMappedData(perInst, dataEval.Schema.GetColumnRoleNames(), opt: true); } return(new FoldResult(dict, dataEval.Schema.Schema, perInstance, trainData.Schema)); } }
internal override IDataTransform GetPerInstanceMetricsCore(RoleMappedData data) { return(NopTransform.CreateIfNeeded(Host, data.Data)); }
private void RunCore(IChannel ch, string cmd) { Host.AssertValue(ch); Host.AssertNonEmpty(cmd); ch.Trace("Constructing trainer"); ITrainer trainer = ImplOptions.Trainer.CreateComponent(Host); IPredictor inputPredictor = null; if (ImplOptions.ContinueTrain && !TrainUtils.TryLoadPredictor(ch, Host, ImplOptions.InputModelFile, out inputPredictor)) { ch.Warning("No input model file specified or model file did not contain a predictor. The model state cannot be initialized."); } ch.Trace("Constructing the training pipeline"); IDataView trainPipe = CreateLoader(); var schema = trainPipe.Schema; string label = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.LabelColumn), ImplOptions.LabelColumn, DefaultColumnNames.Label); string features = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.FeatureColumn), ImplOptions.FeatureColumn, DefaultColumnNames.Features); string group = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.GroupColumn), ImplOptions.GroupColumn, DefaultColumnNames.GroupId); string weight = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.WeightColumn), ImplOptions.WeightColumn, DefaultColumnNames.Weight); string name = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.NameColumn), ImplOptions.NameColumn, DefaultColumnNames.Name); TrainUtils.AddNormalizerIfNeeded(Host, ch, trainer, ref trainPipe, features, ImplOptions.NormalizeFeatures); ch.Trace("Binding columns"); var customCols = TrainUtils.CheckAndGenerateCustomColumns(ch, ImplOptions.CustomColumns); var data = new RoleMappedData(trainPipe, label, features, group, weight, name, customCols); RoleMappedData validData = null; if (!string.IsNullOrWhiteSpace(ImplOptions.ValidationFile)) { if (!trainer.Info.SupportsValidation) { ch.Warning("Ignoring validationFile: Trainer does not accept validation dataset."); } else { ch.Trace("Constructing the validation pipeline"); IDataView validPipe = CreateRawLoader(dataFile: ImplOptions.ValidationFile); validPipe = ApplyTransformUtils.ApplyAllTransformsToData(Host, trainPipe, validPipe); validData = new RoleMappedData(validPipe, data.Schema.GetColumnRoleNames()); } } // In addition to the training set, some trainers can accept two data sets, validation set and test set, // in training phase. The major difference between validation set and test set is that training process may // indirectly use validation set to improve the model but the learned model should totally independent of test set. // Similar to validation set, the trainer can report the scores computed using test set. RoleMappedData testDataUsedInTrainer = null; if (!string.IsNullOrWhiteSpace(ImplOptions.TestFile)) { // In contrast to the if-else block for validation above, we do not throw a warning if test file is provided // because this is TrainTest command. if (trainer.Info.SupportsTest) { ch.Trace("Constructing the test pipeline"); IDataView testPipeUsedInTrainer = CreateRawLoader(dataFile: ImplOptions.TestFile); testPipeUsedInTrainer = ApplyTransformUtils.ApplyAllTransformsToData(Host, trainPipe, testPipeUsedInTrainer); testDataUsedInTrainer = new RoleMappedData(testPipeUsedInTrainer, data.Schema.GetColumnRoleNames()); } } var predictor = TrainUtils.Train(Host, ch, data, trainer, validData, ImplOptions.Calibrator, ImplOptions.MaxCalibrationExamples, ImplOptions.CacheData, inputPredictor, testDataUsedInTrainer); ILegacyDataLoader testPipe; bool hasOutfile = !string.IsNullOrEmpty(ImplOptions.OutputModelFile); var tempFilePath = hasOutfile ? null : Path.GetTempFileName(); using (var file = new SimpleFileHandle(ch, hasOutfile ? ImplOptions.OutputModelFile : tempFilePath, true, !hasOutfile)) { TrainUtils.SaveModel(Host, ch, file, predictor, data, cmd); ch.Trace("Constructing the testing pipeline"); using (var stream = file.OpenReadStream()) using (var rep = RepositoryReader.Open(stream, ch)) testPipe = LoadLoader(rep, ImplOptions.TestFile, true); } // Score. ch.Trace("Scoring and evaluating"); ch.Assert(ImplOptions.Scorer == null || ImplOptions.Scorer is ICommandLineComponentFactory, "TrainTestCommand should only be used from the command line."); IDataScorerTransform scorePipe = ScoreUtils.GetScorer(ImplOptions.Scorer, predictor, testPipe, features, group, customCols, Host, data.Schema); // Evaluate. var evaluator = ImplOptions.Evaluator?.CreateComponent(Host) ?? EvaluateUtils.GetEvaluator(Host, scorePipe.Schema); var dataEval = new RoleMappedData(scorePipe, label, features, group, weight, name, customCols, opt: true); var metrics = evaluator.Evaluate(dataEval); MetricWriter.PrintWarnings(ch, metrics); evaluator.PrintFoldResults(ch, metrics); if (!metrics.TryGetValue(MetricKinds.OverallMetrics, out var overall)) { throw ch.Except("No overall metrics found"); } overall = evaluator.GetOverallResults(overall); MetricWriter.PrintOverallMetrics(Host, ch, ImplOptions.SummaryFilename, overall, 1); evaluator.PrintAdditionalMetrics(ch, metrics); Dictionary <string, IDataView>[] metricValues = { metrics }; SendTelemetryMetric(metricValues); if (!string.IsNullOrWhiteSpace(ImplOptions.OutputDataFile)) { var perInst = evaluator.GetPerInstanceMetrics(dataEval); var perInstData = new RoleMappedData(perInst, label, null, group, weight, name, customCols); var idv = evaluator.GetPerInstanceDataViewToSave(perInstData); MetricWriter.SavePerInstance(Host, ch, ImplOptions.OutputDataFile, idv); } }
public FoldResult(Dictionary <string, IDataView> metrics, Schema scoreSchema, RoleMappedData perInstance, RoleMappedSchema trainSchema) { Metrics = metrics; ScoreSchema = scoreSchema; PerInstanceResults = perInstance; TrainSchema = trainSchema; }
private static bool AddCacheIfWanted(IHostEnvironment env, IChannel ch, ITrainer trainer, ref RoleMappedData data, bool?cacheData) { Contracts.AssertValue(env, nameof(env)); env.AssertValue(ch, nameof(ch)); ch.AssertValue(trainer, nameof(trainer)); ch.AssertValue(data, nameof(data)); bool shouldCache = cacheData ?? !(data.Data is BinaryLoader) && trainer.Info.WantCaching; if (shouldCache) { ch.Trace("Caching"); var prefetch = data.Schema.GetColumnRoles().Select(kc => kc.Value.Index).ToArray(); var cacheView = new CacheDataView(env, data.Data, prefetch); // Because the prefetching worked, we know that these are valid columns. data = new RoleMappedData(cacheView, data.Schema.GetColumnRoleNames()); } else { ch.Trace("Not caching"); } return(shouldCache); }
internal static IDataScorerTransform CreateDefaultScorer(this IHostEnvironment env, RoleMappedData data, IPredictor predictor, RoleMappedSchema trainSchema = null) { Contracts.CheckValue(env, nameof(env)); env.CheckValue(data, nameof(data)); env.CheckValue(predictor, nameof(predictor)); env.CheckValueOrNull(trainSchema); return(ScoreUtils.GetScorer(predictor, data, env, trainSchema)); }
/// <summary> /// Save the model to the stream. /// The method saves the loader and the transformations of dataPipe and saves optionally predictor /// and command. It also uses featureColumn, if provided, to extract feature names. /// </summary> /// <param name="env">The host environment to use.</param> /// <param name="ch">The communication channel to use.</param> /// <param name="outputStream">The output model stream.</param> /// <param name="predictor">The predictor.</param> /// <param name="data">The training examples.</param> /// <param name="command">The command string.</param> public static void SaveModel(IHostEnvironment env, IChannel ch, Stream outputStream, IPredictor predictor, RoleMappedData data, string command = null) { Contracts.CheckValue(env, nameof(env)); env.CheckValue(ch, nameof(ch)); ch.CheckValue(outputStream, nameof(outputStream)); ch.CheckValueOrNull(predictor); ch.CheckValue(data, nameof(data)); ch.CheckValueOrNull(command); using (var ch2 = env.Start("SaveModel")) using (var pch = env.StartProgressChannel("Saving model")) { using (var rep = RepositoryWriter.CreateNew(outputStream, ch2)) { if (predictor != null) { ch2.Trace("Saving predictor"); ModelSaveContext.SaveModel(rep, predictor, ModelFileUtils.DirPredictor); } ch2.Trace("Saving loader and transformations"); var dataPipe = data.Data; if (dataPipe is ILegacyDataLoader) { ModelSaveContext.SaveModel(rep, dataPipe, ModelFileUtils.DirDataLoaderModel); } else { SaveDataPipe(env, rep, dataPipe); } // REVIEW: Handle statistics. // ModelSaveContext.SaveModel(rep, dataStats, DirDataStats); if (!string.IsNullOrWhiteSpace(command)) { using (var ent = rep.CreateEntry(ModelFileUtils.DirTrainingInfo, "Command.txt")) using (var writer = Utils.OpenWriter(ent.Stream)) writer.WriteLine(command); } ModelFileUtils.SaveRoleMappings(env, ch, data.Schema, rep); rep.Commit(); } } }
private static IPredictor TrainCore(IHostEnvironment env, IChannel ch, RoleMappedData data, ITrainer trainer, RoleMappedData validData, IComponentFactory <ICalibratorTrainer> calibrator, int maxCalibrationExamples, bool?cacheData, IPredictor inputPredictor = null, RoleMappedData testData = null) { Contracts.CheckValue(env, nameof(env)); env.CheckValue(ch, nameof(ch)); ch.CheckValue(data, nameof(data)); ch.CheckValue(trainer, nameof(trainer)); ch.CheckValueOrNull(validData); ch.CheckValueOrNull(inputPredictor); AddCacheIfWanted(env, ch, trainer, ref data, cacheData); ch.Trace("Training"); if (validData != null) { AddCacheIfWanted(env, ch, trainer, ref validData, cacheData); } if (inputPredictor != null && !trainer.Info.SupportsIncrementalTraining) { ch.Warning("Ignoring " + nameof(TrainCommand.Arguments.InputModelFile) + ": Trainer does not support incremental training."); inputPredictor = null; } ch.Assert(validData == null || trainer.Info.SupportsValidation); var predictor = trainer.Train(new TrainContext(data, validData, testData, inputPredictor)); var caliTrainer = calibrator?.CreateComponent(env); return(CalibratorUtils.TrainCalibratorIfNeeded(env, ch, caliTrainer, maxCalibrationExamples, trainer, predictor, data)); }
public static IPredictor Train(IHostEnvironment env, IChannel ch, RoleMappedData data, ITrainer trainer, RoleMappedData validData, IComponentFactory <ICalibratorTrainer> calibrator, int maxCalibrationExamples, bool?cacheData, IPredictor inputPredictor = null, RoleMappedData testData = null) { return(TrainCore(env, ch, data, trainer, validData, calibrator, maxCalibrationExamples, cacheData, inputPredictor, testData)); }
public static IPredictor Train(IHostEnvironment env, IChannel ch, RoleMappedData data, ITrainer trainer, IComponentFactory <ICalibratorTrainer> calibrator, int maxCalibrationExamples) { return(TrainCore(env, ch, data, trainer, null, calibrator, maxCalibrationExamples, false)); }
private void RunCore(IChannel ch, string cmd) { Host.AssertValue(ch); Host.AssertNonEmpty(cmd); ch.Trace("Constructing trainer"); ITrainer trainer = _trainer.CreateComponent(Host); IPredictor inputPredictor = null; if (ImplOptions.ContinueTrain && !TrainUtils.TryLoadPredictor(ch, Host, ImplOptions.InputModelFile, out inputPredictor)) { ch.Warning("No input model file specified or model file did not contain a predictor. The model state cannot be initialized."); } ch.Trace("Constructing data pipeline"); IDataView view = CreateLoader(); var schema = view.Schema; var label = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.LabelColumn), _labelColumn, DefaultColumnNames.Label); var feature = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.FeatureColumn), _featureColumn, DefaultColumnNames.Features); var group = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.GroupColumn), _groupColumn, DefaultColumnNames.GroupId); var weight = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.WeightColumn), _weightColumn, DefaultColumnNames.Weight); var name = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.NameColumn), _nameColumn, DefaultColumnNames.Name); TrainUtils.AddNormalizerIfNeeded(Host, ch, trainer, ref view, feature, ImplOptions.NormalizeFeatures); ch.Trace("Binding columns"); var customCols = TrainUtils.CheckAndGenerateCustomColumns(ch, ImplOptions.CustomColumns); var data = new RoleMappedData(view, label, feature, group, weight, name, customCols); // REVIEW: Unify the code that creates validation examples in Train, TrainTest and CV commands. RoleMappedData validData = null; if (!string.IsNullOrWhiteSpace(ImplOptions.ValidationFile)) { if (!trainer.Info.SupportsValidation) { ch.Warning("Ignoring validationFile: Trainer does not accept validation dataset."); } else { ch.Trace("Constructing the validation pipeline"); IDataView validPipe = CreateRawLoader(dataFile: ImplOptions.ValidationFile); validPipe = ApplyTransformUtils.ApplyAllTransformsToData(Host, view, validPipe); validData = new RoleMappedData(validPipe, data.Schema.GetColumnRoleNames()); } } // In addition to the training set, some trainers can accept two extra data sets, validation set and test set, // in training phase. The major difference between validation set and test set is that training process may // indirectly use validation set to improve the model but the learned model should totally independent of test set. // Similar to validation set, the trainer can report the scores computed using test set. RoleMappedData testDataUsedInTrainer = null; if (!string.IsNullOrWhiteSpace(ImplOptions.TestFile)) { // In contrast to the if-else block for validation above, we do not throw a warning if test file is provided // because this is TrainTest command. if (trainer.Info.SupportsTest) { ch.Trace("Constructing the test pipeline"); IDataView testPipeUsedInTrainer = CreateRawLoader(dataFile: ImplOptions.TestFile); testPipeUsedInTrainer = ApplyTransformUtils.ApplyAllTransformsToData(Host, view, testPipeUsedInTrainer); testDataUsedInTrainer = new RoleMappedData(testPipeUsedInTrainer, data.Schema.GetColumnRoleNames()); } } var predictor = TrainUtils.Train(Host, ch, data, trainer, validData, ImplOptions.Calibrator, ImplOptions.MaxCalibrationExamples, ImplOptions.CacheData, inputPredictor, testDataUsedInTrainer); using (var file = Host.CreateOutputFile(ImplOptions.OutputModelFile)) TrainUtils.SaveModel(Host, ch, file, predictor, data, cmd); }