IsErrorType() 공개 메소드

public IsErrorType ( ) : bool
리턴 bool
예제 #1
0
        public virtual bool CheckTypeAccess(CType type, Symbol symWhere)
        {
            Debug.Assert(type != null);

            // Array, Ptr, Nub, etc don't matter.
            type = type.GetNakedType(true);

            if (!type.IsAggregateType())
            {
                Debug.Assert(type.IsVoidType() || type.IsErrorType() || type.IsTypeParameterType());
                return(true);
            }

            for (AggregateType ats = type.AsAggregateType(); ats != null; ats = ats.outerType)
            {
                if (ACCESSERROR.ACCESSERROR_NOERROR != CheckAccessCore(ats.GetOwningAggregate(), ats.outerType, symWhere, null))
                {
                    return(false);
                }
            }

            TypeArray typeArgs = type.AsAggregateType().GetTypeArgsAll();

            for (int i = 0; i < typeArgs.size; i++)
            {
                if (!CheckTypeAccess(typeArgs.Item(i), symWhere))
                {
                    return(false);
                }
            }

            return(true);
        }
예제 #2
0
        public virtual ACCESSERROR CheckAccess2(Symbol symCheck, AggregateType atsCheck, Symbol symWhere, CType typeThru)
        {
            Debug.Assert(symCheck != null);
            Debug.Assert(atsCheck == null || symCheck.parent == atsCheck.getAggregate());
            Debug.Assert(typeThru == null ||
                   typeThru.IsAggregateType() ||
                   typeThru.IsTypeParameterType() ||
                   typeThru.IsArrayType() ||
                   typeThru.IsNullableType() ||
                   typeThru.IsErrorType());

#if DEBUG

            switch (symCheck.getKind())
            {
                default:
                    break;
                case SYMKIND.SK_MethodSymbol:
                case SYMKIND.SK_PropertySymbol:
                case SYMKIND.SK_FieldSymbol:
                case SYMKIND.SK_EventSymbol:
                    Debug.Assert(atsCheck != null);
                    break;
            }

#endif // DEBUG

            ACCESSERROR error = CheckAccessCore(symCheck, atsCheck, symWhere, typeThru);
            if (ACCESSERROR.ACCESSERROR_NOERROR != error)
            {
                return error;
            }

            // Check the accessibility of the return CType.
            CType CType = symCheck.getType();
            if (CType == null)
            {
                return ACCESSERROR.ACCESSERROR_NOERROR;
            }

            // For members of AGGSYMs, atsCheck should always be specified!
            Debug.Assert(atsCheck != null);

            if (atsCheck.getAggregate().IsSource())
            {
                // We already check the "at least as accessible as" rules.
                // Does this always work for generics?
                // Could we get a bad CType argument in typeThru?
                // Maybe call CheckTypeAccess on typeThru?
                return ACCESSERROR.ACCESSERROR_NOERROR;
            }

            // Substitute on the CType.
            if (atsCheck.GetTypeArgsAll().size > 0)
            {
                CType = SymbolLoader.GetTypeManager().SubstType(CType, atsCheck);
            }

            return CheckTypeAccess(CType, symWhere) ? ACCESSERROR.ACCESSERROR_NOERROR : ACCESSERROR.ACCESSERROR_NOACCESS;
        }
예제 #3
0
        public virtual ACCESSERROR CheckAccess2(Symbol symCheck, AggregateType atsCheck, Symbol symWhere, CType typeThru)
        {
            Debug.Assert(symCheck != null);
            Debug.Assert(atsCheck == null || symCheck.parent == atsCheck.getAggregate());
            Debug.Assert(typeThru == null ||
                         typeThru.IsAggregateType() ||
                         typeThru.IsTypeParameterType() ||
                         typeThru.IsArrayType() ||
                         typeThru.IsNullableType() ||
                         typeThru.IsErrorType());

#if DEBUG
            switch (symCheck.getKind())
            {
            default:
                break;

            case SYMKIND.SK_MethodSymbol:
            case SYMKIND.SK_PropertySymbol:
            case SYMKIND.SK_FieldSymbol:
            case SYMKIND.SK_EventSymbol:
                Debug.Assert(atsCheck != null);
                break;
            }
#endif // DEBUG

            ACCESSERROR error = CheckAccessCore(symCheck, atsCheck, symWhere, typeThru);
            if (ACCESSERROR.ACCESSERROR_NOERROR != error)
            {
                return(error);
            }

            // Check the accessibility of the return CType.
            CType CType = symCheck.getType();
            if (CType == null)
            {
                return(ACCESSERROR.ACCESSERROR_NOERROR);
            }

            // For members of AGGSYMs, atsCheck should always be specified!
            Debug.Assert(atsCheck != null);

            if (atsCheck.getAggregate().IsSource())
            {
                // We already check the "at least as accessible as" rules.
                // Does this always work for generics?
                // Could we get a bad CType argument in typeThru?
                // Maybe call CheckTypeAccess on typeThru?
                return(ACCESSERROR.ACCESSERROR_NOERROR);
            }

            // Substitute on the CType.
            if (atsCheck.GetTypeArgsAll().size > 0)
            {
                CType = SymbolLoader.GetTypeManager().SubstType(CType, atsCheck);
            }

            return(CheckTypeAccess(CType, symWhere) ? ACCESSERROR.ACCESSERROR_NOERROR : ACCESSERROR.ACCESSERROR_NOACCESS);
        }
예제 #4
0
        /***************************************************************************************************
        *
        *  There exists an explicit conversion ...
        * From a generic delegate type S to generic delegate type T, provided all of the follow are true:
        *   o Both types are constructed generic types of the same generic delegate type, D<X1,... Xk>.That is,
        *     S is D<S1,... Sk> and T is D<T1,... Tk>.
        *   o S is not compatible with or identical to T.
        *   o If type parameter Xi is declared to be invariant then Si must be identical to Ti.
        *   o If type parameter Xi is declared to be covariant ("out") then Si must be convertible
        *     to Ti via an identify conversion,  implicit reference conversion, or explicit reference conversion.
        *   o If type parameter Xi is declared to be contravariant ("in") then either Si must be identical to Ti,
        *     or Si and Ti must both be reference types.
        ***************************************************************************************************/
        public static bool HasGenericDelegateExplicitReferenceConversion(SymbolLoader loader, CType pSource, CType pTarget)
        {
            if (!pSource.isDelegateType() ||
                !pTarget.isDelegateType() ||
                pSource.getAggregate() != pTarget.getAggregate() ||
                loader.HasIdentityOrImplicitReferenceConversion(pSource, pTarget))
            {
                return(false);
            }

            TypeArray pTypeParams = pSource.getAggregate().GetTypeVarsAll();
            TypeArray pSourceArgs = pSource.AsAggregateType().GetTypeArgsAll();
            TypeArray pTargetArgs = pTarget.AsAggregateType().GetTypeArgsAll();

            Debug.Assert(pTypeParams.size == pSourceArgs.size);
            Debug.Assert(pTypeParams.size == pTargetArgs.size);

            for (int iParam = 0; iParam < pTypeParams.size; ++iParam)
            {
                CType pSourceArg = pSourceArgs.Item(iParam);
                CType pTargetArg = pTargetArgs.Item(iParam);

                // If they're identical then this one is automatically good, so skip it.
                // If we have an error type, then we're in some fault tolerance. Let it through.
                if (pSourceArg == pTargetArg || pTargetArg.IsErrorType() || pSourceArg.IsErrorType())
                {
                    continue;
                }
                TypeParameterType pParam = pTypeParams.Item(iParam).AsTypeParameterType();
                if (pParam.Invariant)
                {
                    return(false);
                }

                if (pParam.Covariant)
                {
                    if (!FExpRefConv(loader, pSourceArg, pTargetArg))
                    {
                        return(false);
                    }
                }
                else if (pParam.Contravariant)
                {
                    if (!pSourceArg.IsRefType() || !pTargetArg.IsRefType())
                    {
                        return(false);
                    }
                }
            }
            return(true);
        }
예제 #5
0
        public virtual bool CheckTypeAccess(CType type, Symbol symWhere)
        {
            Debug.Assert(type != null);

            // Array, Ptr, Nub, etc don't matter.
            type = type.GetNakedType(true);

            if (!type.IsAggregateType())
            {
                Debug.Assert(type.IsVoidType() || type.IsErrorType() || type.IsTypeParameterType());
                return true;
            }

            for (AggregateType ats = type.AsAggregateType(); ats != null; ats = ats.outerType)
            {
                if (ACCESSERROR.ACCESSERROR_NOERROR != CheckAccessCore(ats.GetOwningAggregate(), ats.outerType, symWhere, null))
                {
                    return false;
                }
            }

            TypeArray typeArgs = type.AsAggregateType().GetTypeArgsAll();
            for (int i = 0; i < typeArgs.size; i++)
            {
                if (!CheckTypeAccess(typeArgs.Item(i), symWhere))
                    return false;
            }

            return true;
        }
예제 #6
0
        //
        // SymbolLoader forwarders (end)
        /////////////////////////////////////////////////////////////////////////////////

        //
        // Utility methods
        //
        protected ACCESSERROR CheckAccessCore(Symbol symCheck, AggregateType atsCheck, Symbol symWhere, CType typeThru)
        {
            Debug.Assert(symCheck != null);
            Debug.Assert(atsCheck == null || symCheck.parent == atsCheck.getAggregate());
            Debug.Assert(typeThru == null ||
                   typeThru.IsAggregateType() ||
                   typeThru.IsTypeParameterType() ||
                   typeThru.IsArrayType() ||
                   typeThru.IsNullableType() ||
                   typeThru.IsErrorType());

            switch (symCheck.GetAccess())
            {
                default:
                    throw Error.InternalCompilerError();
                //return ACCESSERROR.ACCESSERROR_NOACCESS;

                case ACCESS.ACC_UNKNOWN:
                    return ACCESSERROR.ACCESSERROR_NOACCESS;

                case ACCESS.ACC_PUBLIC:
                    return ACCESSERROR.ACCESSERROR_NOERROR;

                case ACCESS.ACC_PRIVATE:
                case ACCESS.ACC_PROTECTED:
                    if (symWhere == null)
                    {
                        return ACCESSERROR.ACCESSERROR_NOACCESS;
                    }
                    break;

                case ACCESS.ACC_INTERNAL:
                case ACCESS.ACC_INTERNALPROTECTED:   // Check internal, then protected.

                    if (symWhere == null)
                    {
                        return ACCESSERROR.ACCESSERROR_NOACCESS;
                    }
                    if (symWhere.SameAssemOrFriend(symCheck))
                    {
                        return ACCESSERROR.ACCESSERROR_NOERROR;
                    }
                    if (symCheck.GetAccess() == ACCESS.ACC_INTERNAL)
                    {
                        return ACCESSERROR.ACCESSERROR_NOACCESS;
                    }
                    break;
            }

            // Should always have atsCheck for private and protected access check.
            // We currently don't need it since access doesn't respect instantiation.
            // We just use symWhere.parent.AsAggregateSymbol() instead.
            AggregateSymbol aggCheck = symCheck.parent.AsAggregateSymbol();

            // Find the inner-most enclosing AggregateSymbol.
            AggregateSymbol aggWhere = null;

            for (Symbol symT = symWhere; symT != null; symT = symT.parent)
            {
                if (symT.IsAggregateSymbol())
                {
                    aggWhere = symT.AsAggregateSymbol();
                    break;
                }
                if (symT.IsAggregateDeclaration())
                {
                    aggWhere = symT.AsAggregateDeclaration().Agg();
                    break;
                }
            }

            if (aggWhere == null)
            {
                return ACCESSERROR.ACCESSERROR_NOACCESS;
            }

            // First check for private access.
            for (AggregateSymbol agg = aggWhere; agg != null; agg = agg.GetOuterAgg())
            {
                if (agg == aggCheck)
                {
                    return ACCESSERROR.ACCESSERROR_NOERROR;
                }
            }

            if (symCheck.GetAccess() == ACCESS.ACC_PRIVATE)
            {
                return ACCESSERROR.ACCESSERROR_NOACCESS;
            }

            // Handle the protected case - which is the only real complicated one.
            Debug.Assert(symCheck.GetAccess() == ACCESS.ACC_PROTECTED || symCheck.GetAccess() == ACCESS.ACC_INTERNALPROTECTED);

            // Check if symCheck is in aggWhere or a base of aggWhere,
            // or in an outer agg of aggWhere or a base of an outer agg of aggWhere.

            AggregateType atsThru = null;

            if (typeThru != null && !symCheck.isStatic)
            {
                atsThru = SymbolLoader.GetAggTypeSym(typeThru);
            }

            // Look for aggCheck among the base classes of aggWhere and outer aggs.
            bool found = false;
            for (AggregateSymbol agg = aggWhere; agg != null; agg = agg.GetOuterAgg())
            {
                Debug.Assert(agg != aggCheck); // We checked for this above.

                // Look for aggCheck among the base classes of agg.
                if (agg.FindBaseAgg(aggCheck))
                {
                    found = true;
                    // aggCheck is a base class of agg. Check atsThru.
                    // For non-static protected access to be legal, atsThru must be an instantiation of
                    // agg or a CType derived from an instantiation of agg. In this case
                    // all that matters is that agg is in the base AggregateSymbol chain of atsThru. The
                    // actual AGGTYPESYMs involved don't matter.
                    if (atsThru == null || atsThru.getAggregate().FindBaseAgg(agg))
                    {
                        return ACCESSERROR.ACCESSERROR_NOERROR;
                    }
                }
            }

            // the CType in which the method is being called has no relationship with the 
            // CType on which the method is defined surely this is NOACCESS and not NOACCESSTHRU
            if (found == false)
                return ACCESSERROR.ACCESSERROR_NOACCESS;

            return (atsThru == null) ? ACCESSERROR.ACCESSERROR_NOACCESS : ACCESSERROR.ACCESSERROR_NOACCESSTHRU;
        }
예제 #7
0
            /*
             * BindImplicitConversion
             *
             * This is a complex routine with complex parameters. Generally, this should
             * be called through one of the helper methods that insulates you
             * from the complexity of the interface. This routine handles all the logic
             * associated with implicit conversions.
             *
             * exprSrc - the expression being converted. Can be null if only type conversion
             *           info is being supplied.
             * typeSrc - type of the source
             * typeDest - type of the destination
             * exprDest - returns an expression of the src converted to the dest. If null, we
             *            only care about whether the conversion can be attempted, not the
             *            expression tree.
             * flags    - flags possibly customizing the conversions allowed. E.g., can suppress
             *            user-defined conversions.
             *
             * returns true if the conversion can be made, false if not.
             */
            public bool Bind()
            {
                // 13.1 Implicit conversions
                //
                // The following conversions are classified as implicit conversions:
                //
                // *   Identity conversions
                // *   Implicit numeric conversions
                // *   Implicit enumeration conversions
                // *   Implicit reference conversions
                // *   Boxing conversions
                // *   Implicit type parameter conversions
                // *   Implicit constant expression conversions
                // *   User-defined implicit conversions
                // *   Implicit conversions from an anonymous method expression to a compatible delegate type
                // *   Implicit conversion from a method group to a compatible delegate type
                // *   Conversions from the null type (11.2.7) to any nullable type
                // *   Implicit nullable conversions
                // *   Lifted user-defined implicit conversions
                //
                // Implicit conversions can occur in a variety of situations, including function member invocations
                // (14.4.3), cast expressions (14.6.6), and assignments (14.14).

                // Can't convert to or from the error type.
                if (typeSrc == null || typeDest == null || typeDest.IsNeverSameType())
                {
                    return(false);
                }

                Debug.Assert(typeSrc != null && typeDest != null);         // types must be supplied.
                Debug.Assert(exprSrc == null || typeSrc == exprSrc.type);  // type of source should be correct if source supplied
                Debug.Assert(!needsExprDest || exprSrc != null);           // need source expr to create dest expr

                switch (typeDest.GetTypeKind())
                {
                case TypeKind.TK_ErrorType:
                    Debug.Assert(typeDest.AsErrorType().HasTypeParent() || typeDest.AsErrorType().HasNSParent());
                    if (typeSrc != typeDest)
                    {
                        return(false);
                    }
                    if (needsExprDest)
                    {
                        exprDest = exprSrc;
                    }
                    return(true);

                case TypeKind.TK_NullType:
                    // Can only convert to the null type if src is null.
                    if (!typeSrc.IsNullType())
                    {
                        return(false);
                    }
                    if (needsExprDest)
                    {
                        exprDest = exprSrc;
                    }
                    return(true);

                case TypeKind.TK_MethodGroupType:
                    VSFAIL("Something is wrong with Type.IsNeverSameType()");
                    return(false);

                case TypeKind.TK_NaturalIntegerType:
                case TypeKind.TK_ArgumentListType:
                    return(typeSrc == typeDest);

                case TypeKind.TK_VoidType:
                    return(false);

                default:
                    break;
                }

                if (typeSrc.IsErrorType())
                {
                    Debug.Assert(!typeDest.IsErrorType());
                    return(false);
                }

                // 13.1.1 Identity conversion
                //
                // An identity conversion converts from any type to the same type. This conversion exists only
                // such that an entity that already has a required type can be said to be convertible to that type.

                if (typeSrc == typeDest &&
                    ((flags & CONVERTTYPE.ISEXPLICIT) == 0 || (!typeSrc.isPredefType(PredefinedType.PT_FLOAT) && !typeSrc.isPredefType(PredefinedType.PT_DOUBLE))))
                {
                    if (needsExprDest)
                    {
                        exprDest = exprSrc;
                    }
                    return(true);
                }

                if (typeDest.IsNullableType())
                {
                    return(BindNubConversion(typeDest.AsNullableType()));
                }

                if (typeSrc.IsNullableType())
                {
                    return(bindImplicitConversionFromNullable(typeSrc.AsNullableType()));
                }

                if ((flags & CONVERTTYPE.ISEXPLICIT) != 0)
                {
                    flags |= CONVERTTYPE.NOUDC;
                }

                // Get the fundamental types of destination.
                FUNDTYPE ftDest = typeDest.fundType();

                Debug.Assert(ftDest != FUNDTYPE.FT_NONE || typeDest.IsParameterModifierType());

                switch (typeSrc.GetTypeKind())
                {
                default:
                    VSFAIL("Bad type symbol kind");
                    break;

                case TypeKind.TK_MethodGroupType:
                    if (exprSrc.isMEMGRP())
                    {
                        EXPRCALL outExpr;
                        bool     retVal = binder.BindGrpConversion(exprSrc.asMEMGRP(), typeDest, needsExprDest, out outExpr, false);
                        exprDest = outExpr;
                        return(retVal);
                    }
                    return(false);

                case TypeKind.TK_VoidType:
                case TypeKind.TK_ErrorType:
                case TypeKind.TK_ParameterModifierType:
                case TypeKind.TK_ArgumentListType:
                    return(false);

                case TypeKind.TK_NullType:
                    if (bindImplicitConversionFromNull())
                    {
                        return(true);
                    }
                    // If not, try user defined implicit conversions.
                    break;

                case TypeKind.TK_ArrayType:
                    if (bindImplicitConversionFromArray())
                    {
                        return(true);
                    }
                    // If not, try user defined implicit conversions.
                    break;

                case TypeKind.TK_PointerType:
                    if (bindImplicitConversionFromPointer())
                    {
                        return(true);
                    }
                    // If not, try user defined implicit conversions.
                    break;

                case TypeKind.TK_TypeParameterType:
                    if (bindImplicitConversionFromTypeVar(typeSrc.AsTypeParameterType()))
                    {
                        return(true);
                    }
                    // If not, try user defined implicit conversions.
                    break;

                case TypeKind.TK_AggregateType:
                    // TypeReference and ArgIterator can't be boxed (or converted to anything else)
                    if (typeSrc.isSpecialByRefType())
                    {
                        return(false);
                    }
                    if (bindImplicitConversionFromAgg(typeSrc.AsAggregateType()))
                    {
                        return(true);
                    }
                    // If not, try user defined implicit conversions.
                    break;
                }

                // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                // RUNTIME BINDER ONLY CHANGE
                // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                //
                // Every incoming dynamic operand should be implicitly convertible
                // to any type that it is an instance of.

                if (exprSrc != null &&
                    exprSrc.RuntimeObject != null &&
                    typeDest.AssociatedSystemType.IsInstanceOfType(exprSrc.RuntimeObject) &&
                    binder.GetSemanticChecker().CheckTypeAccess(typeDest, binder.Context.ContextForMemberLookup()))
                {
                    if (needsExprDest)
                    {
                        binder.bindSimpleCast(exprSrc, exprTypeDest, out exprDest, exprSrc.flags & EXPRFLAG.EXF_CANTBENULL);
                    }
                    return(true);
                }

                // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                // END RUNTIME BINDER ONLY CHANGE
                // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                // 13.1.8 User-defined implicit conversions
                //
                // A user-defined implicit conversion consists of an optional standard implicit conversion,
                // followed by execution of a user-defined implicit conversion operator, followed by another
                // optional standard implicit conversion. The exact rules for evaluating user-defined
                // conversions are described in 13.4.3.

                if (0 == (flags & CONVERTTYPE.NOUDC))
                {
                    return(binder.bindUserDefinedConversion(exprSrc, typeSrc, typeDest, needsExprDest, out exprDest, true));
                }

                // No conversion was found.

                return(false);
            }
예제 #8
0
        public bool SubstEqualTypesCore(CType typeDst, CType typeSrc, SubstContext pctx)
        {
        LRecurse:  // Label used for "tail" recursion.

            if (typeDst == typeSrc || typeDst.Equals(typeSrc))
            {
                return true;
            }

            switch (typeSrc.GetTypeKind())
            {
                default:
                    Debug.Assert(false, "Bad Symbol kind in SubstEqualTypesCore");
                    return false;

                case TypeKind.TK_NullType:
                case TypeKind.TK_VoidType:
                case TypeKind.TK_OpenTypePlaceholderType:
                    // There should only be a single instance of these.
                    Debug.Assert(typeDst.GetTypeKind() != typeSrc.GetTypeKind());
                    return false;

                case TypeKind.TK_ArrayType:
                    if (typeDst.GetTypeKind() != TypeKind.TK_ArrayType || typeDst.AsArrayType().rank != typeSrc.AsArrayType().rank)
                        return false;
                    goto LCheckBases;

                case TypeKind.TK_ParameterModifierType:
                    if (typeDst.GetTypeKind() != TypeKind.TK_ParameterModifierType ||
                        ((pctx.grfst & SubstTypeFlags.NoRefOutDifference) == 0 &&
                         typeDst.AsParameterModifierType().isOut != typeSrc.AsParameterModifierType().isOut))
                        return false;
                    goto LCheckBases;

                case TypeKind.TK_PointerType:
                case TypeKind.TK_NullableType:
                    if (typeDst.GetTypeKind() != typeSrc.GetTypeKind())
                        return false;
                    LCheckBases:
                    typeSrc = typeSrc.GetBaseOrParameterOrElementType();
                    typeDst = typeDst.GetBaseOrParameterOrElementType();
                    goto LRecurse;

                case TypeKind.TK_AggregateType:
                    if (typeDst.GetTypeKind() != TypeKind.TK_AggregateType)
                        return false;
                    { // BLOCK
                        AggregateType atsSrc = typeSrc.AsAggregateType();
                        AggregateType atsDst = typeDst.AsAggregateType();

                        if (atsSrc.getAggregate() != atsDst.getAggregate())
                            return false;

                        Debug.Assert(atsSrc.GetTypeArgsAll().Size == atsDst.GetTypeArgsAll().Size);

                        // All the args must unify.
                        for (int i = 0; i < atsSrc.GetTypeArgsAll().Size; i++)
                        {
                            if (!SubstEqualTypesCore(atsDst.GetTypeArgsAll().Item(i), atsSrc.GetTypeArgsAll().Item(i), pctx))
                                return false;
                        }
                    }
                    return true;

                case TypeKind.TK_ErrorType:
                    if (!typeDst.IsErrorType() || !typeSrc.AsErrorType().HasParent() || !typeDst.AsErrorType().HasParent())
                        return false;
                    {
                        ErrorType errSrc = typeSrc.AsErrorType();
                        ErrorType errDst = typeDst.AsErrorType();
                        Debug.Assert(errSrc.nameText != null && errSrc.typeArgs != null);
                        Debug.Assert(errDst.nameText != null && errDst.typeArgs != null);

                        if (errSrc.nameText != errDst.nameText || errSrc.typeArgs.Size != errDst.typeArgs.Size)
                            return false;

                        if (errSrc.HasTypeParent() != errDst.HasTypeParent())
                        {
                            return false;
                        }
                        if (errSrc.HasTypeParent())
                        {
                            if (errSrc.GetTypeParent() != errDst.GetTypeParent())
                            {
                                return false;
                            }
                            if (!SubstEqualTypesCore(errDst.GetTypeParent(), errSrc.GetTypeParent(), pctx))
                            {
                                return false;
                            }
                        }
                        else
                        {
                            if (errSrc.GetNSParent() != errDst.GetNSParent())
                            {
                                return false;
                            }
                        }

                        // All the args must unify.
                        for (int i = 0; i < errSrc.typeArgs.Size; i++)
                        {
                            if (!SubstEqualTypesCore(errDst.typeArgs.Item(i), errSrc.typeArgs.Item(i), pctx))
                                return false;
                        }
                    }
                    return true;

                case TypeKind.TK_TypeParameterType:
                    { // BLOCK
                        TypeParameterSymbol tvs = typeSrc.AsTypeParameterType().GetTypeParameterSymbol();
                        int index = tvs.GetIndexInTotalParameters();

                        if (tvs.IsMethodTypeParameter())
                        {
                            if ((pctx.grfst & SubstTypeFlags.DenormMeth) != 0 && tvs.parent != null)
                            {
                                // typeDst == typeSrc was handled above.
                                Debug.Assert(typeDst != typeSrc);
                                return false;
                            }
                            Debug.Assert(tvs.GetIndexInOwnParameters() == tvs.GetIndexInTotalParameters());
                            Debug.Assert(pctx.prgtypeMeth == null || tvs.GetIndexInTotalParameters() < pctx.ctypeMeth);
                            if (index < pctx.ctypeMeth && pctx.prgtypeMeth != null)
                            {
                                return typeDst == pctx.prgtypeMeth[index];
                            }
                            if ((pctx.grfst & SubstTypeFlags.NormMeth) != 0)
                            {
                                return typeDst == GetStdMethTypeVar(index);
                            }
                        }
                        else
                        {
                            if ((pctx.grfst & SubstTypeFlags.DenormClass) != 0 && tvs.parent != null)
                            {
                                // typeDst == typeSrc was handled above.
                                Debug.Assert(typeDst != typeSrc);
                                return false;
                            }
                            Debug.Assert(pctx.prgtypeCls == null || tvs.GetIndexInTotalParameters() < pctx.ctypeCls);
                            if (index < pctx.ctypeCls)
                                return typeDst == pctx.prgtypeCls[index];
                            if ((pctx.grfst & SubstTypeFlags.NormClass) != 0)
                                return typeDst == GetStdClsTypeVar(index);
                        }
                    }
                    return false;
            }
        }
예제 #9
0
        // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
        // RUNTIME BINDER ONLY CHANGE
        // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

        internal bool GetBestAccessibleType(CSemanticChecker semanticChecker, BindingContext bindingContext, CType typeSrc, out CType typeDst)
        {
            // This method implements the "best accessible type" algorithm for determining the type
            // of untyped arguments in the runtime binder. It is also used in method type inference
            // to fix type arguments to types that are accessible.

            // The new type is returned in an out parameter. The result will be true (and the out param
            // non-null) only when the algorithm could find a suitable accessible type.

            Debug.Assert(semanticChecker != null);
            Debug.Assert(bindingContext != null);
            Debug.Assert(typeSrc != null);

            typeDst = null;

            if (semanticChecker.CheckTypeAccess(typeSrc, bindingContext.ContextForMemberLookup()))
            {
                // If we already have an accessible type, then use it. This is the terminal point of the recursion.
                typeDst = typeSrc;
                return true;
            }

            // These guys have no accessibility concerns.
            Debug.Assert(!typeSrc.IsVoidType() && !typeSrc.IsErrorType() && !typeSrc.IsTypeParameterType());

            if (typeSrc.IsParameterModifierType() || typeSrc.IsPointerType())
            {
                // We cannot vary these.
                return false;
            }

            CType intermediateType;
            if ((typeSrc.isInterfaceType() || typeSrc.isDelegateType()) && TryVarianceAdjustmentToGetAccessibleType(semanticChecker, bindingContext, typeSrc.AsAggregateType(), out intermediateType))
            {
                // If we have an interface or delegate type, then it can potentially be varied by its type arguments
                // to produce an accessible type, and if that's the case, then return that.
                // Example: IEnumerable<PrivateConcreteFoo> --> IEnumerable<PublicAbstractFoo>
                typeDst = intermediateType;

                Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
                return true;
            }

            if (typeSrc.IsArrayType() && TryArrayVarianceAdjustmentToGetAccessibleType(semanticChecker, bindingContext, typeSrc.AsArrayType(), out intermediateType))
            {
                // Similarly to the interface and delegate case, arrays are covariant in their element type and
                // so we can potentially produce an array type that is accessible.
                // Example: PrivateConcreteFoo[] --> PublicAbstractFoo[]
                typeDst = intermediateType;

                Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
                return true;
            }

            if (typeSrc.IsNullableType())
            {
                // We have an inaccessible nullable type, which means that the best we can do is System.ValueType.
                typeDst = this.GetOptPredefAgg(PredefinedType.PT_VALUE).getThisType();

                Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
                return true;
            }

            if (typeSrc.IsArrayType())
            {
                // We have an inaccessible array type for which we could not earlier find a better array type
                // with a covariant conversion, so the best we can do is System.Array.
                typeDst = this.GetReqPredefAgg(PredefinedType.PT_ARRAY).getThisType();

                Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
                return true;
            }

            Debug.Assert(typeSrc.IsAggregateType());

            if (typeSrc.IsAggregateType())
            {
                // We have an AggregateType, so recurse on its base class.
                AggregateType aggType = typeSrc.AsAggregateType();
                AggregateType baseType = aggType.GetBaseClass();

                if (baseType == null)
                {
                    // This happens with interfaces, for instance. But in that case, the
                    // conversion to object does exist, is an implicit reference conversion,
                    // and so we will use it.
                    baseType = this.GetReqPredefAgg(PredefinedType.PT_OBJECT).getThisType();
                }

                return GetBestAccessibleType(semanticChecker, bindingContext, baseType, out typeDst);
            }

            return false;
        }
예제 #10
0
        private static bool CheckSingleConstraint(CSemanticChecker checker, ErrorHandling errHandling, Symbol symErr, TypeParameterType var, CType arg, TypeArray typeArgsCls, TypeArray typeArgsMeth, CheckConstraintsFlags flags)
        {
            bool fReportErrors = 0 == (flags & CheckConstraintsFlags.NoErrors);

            if (arg.IsOpenTypePlaceholderType())
            {
                return true;
            }

            if (arg.IsErrorType())
            {
                // Error should have been reported previously.
                return false;
            }

            if (checker.CheckBogus(arg))
            {
                if (fReportErrors)
                {
                    errHandling.ErrorRef(ErrorCode.ERR_BogusType, arg);
                }

                return false;
            }

            if (arg.IsPointerType() || arg.isSpecialByRefType())
            {
                if (fReportErrors)
                {
                    errHandling.Error(ErrorCode.ERR_BadTypeArgument, arg);
                }

                return false;
            }

            if (arg.isStaticClass())
            {
                if (fReportErrors)
                {
                    checker.ReportStaticClassError(null, arg, ErrorCode.ERR_GenericArgIsStaticClass);
                }

                return false;
            }

            bool fError = false;
            if (var.HasRefConstraint() && !arg.IsRefType())
            {
                if (fReportErrors)
                {
                    errHandling.ErrorRef(ErrorCode.ERR_RefConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
                }

                fError = true;
            }

            TypeArray bnds = checker.GetSymbolLoader().GetTypeManager().SubstTypeArray(var.GetBounds(), typeArgsCls, typeArgsMeth);
            int itypeMin = 0;

            if (var.HasValConstraint())
            {
                // If we have a type variable that is constrained to a value type, then we
                // want to check if its a nullable type, so that we can report the 
                // constraint error below. In order to do this however, we need to check 
                // that either the type arg is not a value type, or it is a nullable type.
                //
                // To check whether or not its a nullable type, we need to get the resolved
                // bound from the type argument and check against that.

                bool bIsValueType = arg.IsValType();
                bool bIsNullable = arg.IsNullableType();
                if (bIsValueType && arg.IsTypeParameterType())
                {
                    TypeArray pArgBnds = arg.AsTypeParameterType().GetBounds();
                    if (pArgBnds.size > 0)
                    {
                        bIsNullable = pArgBnds.Item(0).IsNullableType();
                    }
                }

                if (!bIsValueType || bIsNullable)
                {
                    if (fReportErrors)
                    {
                        errHandling.ErrorRef(ErrorCode.ERR_ValConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
                    }

                    fError = true;
                }

                // Since FValCon() is set it is redundant to check System.ValueType as well.
                if (bnds.size != 0 && bnds.Item(0).isPredefType(PredefinedType.PT_VALUE))
                {
                    itypeMin = 1;
                }
            }

            for (int j = itypeMin; j < bnds.size; j++)
            {
                CType typeBnd = bnds.Item(j);
                if (!SatisfiesBound(checker, arg, typeBnd))
                {
                    if (fReportErrors)
                    {
                        // The bound isn't satisfied because of a constaint type. Explain to the user why not.
                        // There are 4 main cases, based on the type of the supplied type argument:
                        //  - reference type, or type parameter known to be a reference type
                        //  - nullable type, from which there is a boxing conversion to the constraint type(see below for details)
                        //  - type varaiable
                        //  - value type
                        // These cases are broken out because: a) The sets of conversions which can be used 
                        // for constraint satisfaction is different based on the type argument supplied, 
                        // and b) Nullable is one funky type, and user's can use all the help they can get
                        // when using it.
                        ErrorCode error;
                        if (arg.IsRefType())
                        {
                            // A reference type can only satisfy bounds to types 
                            // to which they have an implicit reference conversion
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedRefType;
                        }
                        else if (arg.IsNullableType() && checker.GetSymbolLoader().HasBaseConversion(arg.AsNullableType().GetUnderlyingType(), typeBnd))    // This is inlining FBoxingConv
                        {
                            // nullable types do not satisfy bounds to every type that they are boxable to
                            // They only satisfy bounds of object and ValueType
                            if (typeBnd.isPredefType(PredefinedType.PT_ENUM) || arg.AsNullableType().GetUnderlyingType() == typeBnd)
                            {
                                // Nullable types don't satisfy bounds of EnumType, or the underlying type of the enum
                                // even though the conversion from Nullable to these types is a boxing conversion
                                // This is a rare case, because these bounds can never be directly stated ...
                                // These bounds can only occur when one type paramter is constrained to a second type parameter
                                // and the second type parameter is instantiated with Enum or the underlying type of the first type
                                // parameter
                                error = ErrorCode.ERR_GenericConstraintNotSatisfiedNullableEnum;
                            }
                            else
                            {
                                // Nullable types don't satisfy the bounds of any interface type
                                // even when there is a boxing conversion from the Nullable type to 
                                // the interface type. This will be a relatively common scenario
                                // so we cal it out separately from the previous case.
                                Debug.Assert(typeBnd.isInterfaceType());
                                error = ErrorCode.ERR_GenericConstraintNotSatisfiedNullableInterface;
                            }
                        }
                        else if (arg.IsTypeParameterType())
                        {
                            // Type variables can satisfy bounds through boxing and type variable conversions
                            Debug.Assert(!arg.IsRefType());
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedTyVar;
                        }
                        else
                        {
                            // Value types can only satisfy bounds through boxing conversions.
                            // Note that the exceptional case of Nullable types and boxing is handled above.
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedValType;
                        }
                        errHandling.Error(error, new ErrArgRef(symErr), new ErrArg(typeBnd, ErrArgFlags.Unique), var, new ErrArgRef(arg, ErrArgFlags.Unique));
                    }
                    fError = true;
                }
            }

            // Check the newable constraint.
            if (!var.HasNewConstraint() || arg.IsValType())
            {
                return !fError;
            }

            if (arg.isClassType())
            {
                AggregateSymbol agg = arg.AsAggregateType().getAggregate();

                // Due to late binding nature of IDE created symbols, the AggregateSymbol might not
                // have all the information necessary yet, if it is not fully bound.
                // by calling LookupAggMember, it will ensure that we will update all the
                // information necessary at least for the given method.
                checker.GetSymbolLoader().LookupAggMember(checker.GetNameManager().GetPredefName(PredefinedName.PN_CTOR), agg, symbmask_t.MASK_ALL);

                if (agg.HasPubNoArgCtor() && !agg.IsAbstract())
                {
                    return !fError;
                }
            }
            else if (arg.IsTypeParameterType() && arg.AsTypeParameterType().HasNewConstraint())
            {
                return !fError;
            }

            if (fReportErrors)
            {
                errHandling.ErrorRef(ErrorCode.ERR_NewConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
            }

            return false;
        }
예제 #11
0
            /*
             * BindExplicitConversion
             *
             * This is a complex routine with complex parameter. Generally, this should
             * be called through one of the helper methods that insulates you
             * from the complexity of the interface. This routine handles all the logic
             * associated with explicit conversions.
             *
             * Note that this function calls BindImplicitConversion first, so the main
             * logic is only concerned with conversions that can be made explicitly, but
             * not implicitly.
             */
            public bool Bind()
            {
                // To test for a standard conversion, call canConvert(exprSrc, typeDest, STANDARDANDCONVERTTYPE.NOUDC) and
                // canConvert(typeDest, typeSrc, STANDARDANDCONVERTTYPE.NOUDC).
                Debug.Assert((_flags & CONVERTTYPE.STANDARD) == 0);

                // 13.2 Explicit conversions
                //
                // The following conversions are classified as explicit conversions:
                //
                // * All implicit conversions
                // * Explicit numeric conversions
                // * Explicit enumeration conversions
                // * Explicit reference conversions
                // * Explicit interface conversions
                // * Unboxing conversions
                // * Explicit type parameter conversions
                // * User-defined explicit conversions
                // * Explicit nullable conversions
                // * Lifted user-defined explicit conversions
                //
                // Explicit conversions can occur in cast expressions (14.6.6).
                //
                // The explicit conversions that are not implicit conversions are conversions that cannot be
                // proven always to succeed, conversions that are known possibly to lose information, and
                // conversions across domains of types sufficiently different to merit explicit notation.

                // The set of explicit conversions includes all implicit conversions.

                // Don't try user-defined conversions now because we'll try them again later.
                if (_binder.BindImplicitConversion(_exprSrc, _typeSrc, _exprTypeDest, _pDestinationTypeForLambdaErrorReporting, _needsExprDest, out _exprDest, _flags | CONVERTTYPE.ISEXPLICIT))
                {
                    return(true);
                }

                if (_typeSrc == null || _typeDest == null || _typeSrc.IsErrorType() ||
                    _typeDest.IsErrorType() || _typeDest.IsNeverSameType())
                {
                    return(false);
                }

                if (_typeDest.IsNullableType())
                {
                    // This is handled completely by BindImplicitConversion.
                    return(false);
                }

                if (_typeSrc.IsNullableType())
                {
                    return(bindExplicitConversionFromNub());
                }

                if (bindExplicitConversionFromArrayToIList())
                {
                    return(true);
                }

                // if we were casting an integral constant to another constant type,
                // then, if the constant were in range, then the above call would have succeeded.

                // But it failed, and so we know that the constant is not in range

                switch (_typeDest.GetTypeKind())
                {
                default:
                    VSFAIL("Bad type kind");
                    return(false);

                case TypeKind.TK_VoidType:
                    return(false);    // Can't convert to a method group or anon method.

                case TypeKind.TK_NullType:
                    return(false);     // Can never convert TO the null type.

                case TypeKind.TK_TypeParameterType:
                    if (bindExplicitConversionToTypeVar())
                    {
                        return(true);
                    }
                    break;

                case TypeKind.TK_ArrayType:
                    if (bindExplicitConversionToArray(_typeDest.AsArrayType()))
                    {
                        return(true);
                    }
                    break;

                case TypeKind.TK_PointerType:
                    if (bindExplicitConversionToPointer())
                    {
                        return(true);
                    }
                    break;

                case TypeKind.TK_AggregateType:
                {
                    AggCastResult result = bindExplicitConversionToAggregate(_typeDest.AsAggregateType());

                    if (result == AggCastResult.Success)
                    {
                        return(true);
                    }
                    if (result == AggCastResult.Abort)
                    {
                        return(false);
                    }
                    break;
                }
                }

                // No built-in conversion was found. Maybe a user-defined conversion?
                if (0 == (_flags & CONVERTTYPE.NOUDC))
                {
                    return(_binder.bindUserDefinedConversion(_exprSrc, _typeSrc, _typeDest, _needsExprDest, out _exprDest, false));
                }
                return(false);
            }
예제 #12
0
        //
        // SymbolLoader forwarders (end)
        /////////////////////////////////////////////////////////////////////////////////

        //
        // Utility methods
        //
        protected ACCESSERROR CheckAccessCore(Symbol symCheck, AggregateType atsCheck, Symbol symWhere, CType typeThru)
        {
            Debug.Assert(symCheck != null);
            Debug.Assert(atsCheck == null || symCheck.parent == atsCheck.getAggregate());
            Debug.Assert(typeThru == null ||
                         typeThru.IsAggregateType() ||
                         typeThru.IsTypeParameterType() ||
                         typeThru.IsArrayType() ||
                         typeThru.IsNullableType() ||
                         typeThru.IsErrorType());

            switch (symCheck.GetAccess())
            {
            default:
                throw Error.InternalCompilerError();
            //return ACCESSERROR.ACCESSERROR_NOACCESS;

            case ACCESS.ACC_UNKNOWN:
                return(ACCESSERROR.ACCESSERROR_NOACCESS);

            case ACCESS.ACC_PUBLIC:
                return(ACCESSERROR.ACCESSERROR_NOERROR);

            case ACCESS.ACC_PRIVATE:
            case ACCESS.ACC_PROTECTED:
                if (symWhere == null)
                {
                    return(ACCESSERROR.ACCESSERROR_NOACCESS);
                }
                break;

            case ACCESS.ACC_INTERNAL:
            case ACCESS.ACC_INTERNALPROTECTED:       // Check internal, then protected.

                if (symWhere == null)
                {
                    return(ACCESSERROR.ACCESSERROR_NOACCESS);
                }
                if (symWhere.SameAssemOrFriend(symCheck))
                {
                    return(ACCESSERROR.ACCESSERROR_NOERROR);
                }
                if (symCheck.GetAccess() == ACCESS.ACC_INTERNAL)
                {
                    return(ACCESSERROR.ACCESSERROR_NOACCESS);
                }
                break;
            }

            // Should always have atsCheck for private and protected access check.
            // We currently don't need it since access doesn't respect instantiation.
            // We just use symWhere.parent.AsAggregateSymbol() instead.
            AggregateSymbol aggCheck = symCheck.parent.AsAggregateSymbol();

            // Find the inner-most enclosing AggregateSymbol.
            AggregateSymbol aggWhere = null;

            for (Symbol symT = symWhere; symT != null; symT = symT.parent)
            {
                if (symT.IsAggregateSymbol())
                {
                    aggWhere = symT.AsAggregateSymbol();
                    break;
                }
                if (symT.IsAggregateDeclaration())
                {
                    aggWhere = symT.AsAggregateDeclaration().Agg();
                    break;
                }
            }

            if (aggWhere == null)
            {
                return(ACCESSERROR.ACCESSERROR_NOACCESS);
            }

            // First check for private access.
            for (AggregateSymbol agg = aggWhere; agg != null; agg = agg.GetOuterAgg())
            {
                if (agg == aggCheck)
                {
                    return(ACCESSERROR.ACCESSERROR_NOERROR);
                }
            }

            if (symCheck.GetAccess() == ACCESS.ACC_PRIVATE)
            {
                return(ACCESSERROR.ACCESSERROR_NOACCESS);
            }

            // Handle the protected case - which is the only real complicated one.
            Debug.Assert(symCheck.GetAccess() == ACCESS.ACC_PROTECTED || symCheck.GetAccess() == ACCESS.ACC_INTERNALPROTECTED);

            // Check if symCheck is in aggWhere or a base of aggWhere,
            // or in an outer agg of aggWhere or a base of an outer agg of aggWhere.

            AggregateType atsThru = null;

            if (typeThru != null && !symCheck.isStatic)
            {
                atsThru = SymbolLoader.GetAggTypeSym(typeThru);
            }

            // Look for aggCheck among the base classes of aggWhere and outer aggs.
            bool found = false;

            for (AggregateSymbol agg = aggWhere; agg != null; agg = agg.GetOuterAgg())
            {
                Debug.Assert(agg != aggCheck); // We checked for this above.

                // Look for aggCheck among the base classes of agg.
                if (agg.FindBaseAgg(aggCheck))
                {
                    found = true;
                    // aggCheck is a base class of agg. Check atsThru.
                    // For non-static protected access to be legal, atsThru must be an instantiation of
                    // agg or a CType derived from an instantiation of agg. In this case
                    // all that matters is that agg is in the base AggregateSymbol chain of atsThru. The
                    // actual AGGTYPESYMs involved don't matter.
                    if (atsThru == null || atsThru.getAggregate().FindBaseAgg(agg))
                    {
                        return(ACCESSERROR.ACCESSERROR_NOERROR);
                    }
                }
            }

            // the CType in whice the method is being called has no relationship with the
            // CType on which the method is defined surely this is NOACCESS and not NOACCESSTHRU
            if (found == false)
            {
                return(ACCESSERROR.ACCESSERROR_NOACCESS);
            }

            return((atsThru == null) ? ACCESSERROR.ACCESSERROR_NOACCESS : ACCESSERROR.ACCESSERROR_NOACCESSTHRU);
        }
예제 #13
0
        private static bool CheckSingleConstraint(CSemanticChecker checker, ErrorHandling errHandling, Symbol symErr, TypeParameterType var, CType arg, TypeArray typeArgsCls, TypeArray typeArgsMeth, CheckConstraintsFlags flags)
        {
            bool fReportErrors = 0 == (flags & CheckConstraintsFlags.NoErrors);

            if (arg.IsOpenTypePlaceholderType())
            {
                return(true);
            }

            if (arg.IsErrorType())
            {
                // Error should have been reported previously.
                return(false);
            }

            if (checker.CheckBogus(arg))
            {
                if (fReportErrors)
                {
                    errHandling.ErrorRef(ErrorCode.ERR_BogusType, arg);
                }

                return(false);
            }

            if (arg.IsPointerType() || arg.isSpecialByRefType())
            {
                if (fReportErrors)
                {
                    errHandling.Error(ErrorCode.ERR_BadTypeArgument, arg);
                }

                return(false);
            }

            if (arg.isStaticClass())
            {
                if (fReportErrors)
                {
                    checker.ReportStaticClassError(null, arg, ErrorCode.ERR_GenericArgIsStaticClass);
                }

                return(false);
            }

            bool fError = false;

            if (var.HasRefConstraint() && !arg.IsRefType())
            {
                if (fReportErrors)
                {
                    errHandling.ErrorRef(ErrorCode.ERR_RefConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
                }

                fError = true;
            }

            TypeArray bnds     = checker.GetSymbolLoader().GetTypeManager().SubstTypeArray(var.GetBounds(), typeArgsCls, typeArgsMeth);
            int       itypeMin = 0;

            if (var.HasValConstraint())
            {
                // If we have a type variable that is constrained to a value type, then we
                // want to check if its a nullable type, so that we can report the
                // constraint error below. In order to do this however, we need to check
                // that either the type arg is not a value type, or it is a nullable type.
                //
                // To check whether or not its a nullable type, we need to get the resolved
                // bound from the type argument and check against that.

                bool bIsValueType = arg.IsValType();
                bool bIsNullable  = arg.IsNullableType();
                if (bIsValueType && arg.IsTypeParameterType())
                {
                    TypeArray pArgBnds = arg.AsTypeParameterType().GetBounds();
                    if (pArgBnds.Count > 0)
                    {
                        bIsNullable = pArgBnds[0].IsNullableType();
                    }
                }

                if (!bIsValueType || bIsNullable)
                {
                    if (fReportErrors)
                    {
                        errHandling.ErrorRef(ErrorCode.ERR_ValConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
                    }

                    fError = true;
                }

                // Since FValCon() is set it is redundant to check System.ValueType as well.
                if (bnds.Count != 0 && bnds[0].isPredefType(PredefinedType.PT_VALUE))
                {
                    itypeMin = 1;
                }
            }

            for (int j = itypeMin; j < bnds.Count; j++)
            {
                CType typeBnd = bnds[j];
                if (!SatisfiesBound(checker, arg, typeBnd))
                {
                    if (fReportErrors)
                    {
                        // The bound isn't satisfied because of a constraint type. Explain to the user why not.
                        // There are 4 main cases, based on the type of the supplied type argument:
                        //  - reference type, or type parameter known to be a reference type
                        //  - nullable type, from which there is a boxing conversion to the constraint type(see below for details)
                        //  - type variable
                        //  - value type
                        // These cases are broken out because: a) The sets of conversions which can be used
                        // for constraint satisfaction is different based on the type argument supplied,
                        // and b) Nullable is one funky type, and user's can use all the help they can get
                        // when using it.
                        ErrorCode error;
                        if (arg.IsRefType())
                        {
                            // A reference type can only satisfy bounds to types
                            // to which they have an implicit reference conversion
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedRefType;
                        }
                        else if (arg.IsNullableType() && checker.GetSymbolLoader().HasBaseConversion(arg.AsNullableType().GetUnderlyingType(), typeBnd))    // This is inlining FBoxingConv
                        {
                            // nullable types do not satisfy bounds to every type that they are boxable to
                            // They only satisfy bounds of object and ValueType
                            if (typeBnd.isPredefType(PredefinedType.PT_ENUM) || arg.AsNullableType().GetUnderlyingType() == typeBnd)
                            {
                                // Nullable types don't satisfy bounds of EnumType, or the underlying type of the enum
                                // even though the conversion from Nullable to these types is a boxing conversion
                                // This is a rare case, because these bounds can never be directly stated ...
                                // These bounds can only occur when one type paramter is constrained to a second type parameter
                                // and the second type parameter is instantiated with Enum or the underlying type of the first type
                                // parameter
                                error = ErrorCode.ERR_GenericConstraintNotSatisfiedNullableEnum;
                            }
                            else
                            {
                                // Nullable types don't satisfy the bounds of any interface type
                                // even when there is a boxing conversion from the Nullable type to
                                // the interface type. This will be a relatively common scenario
                                // so we cal it out separately from the previous case.
                                Debug.Assert(typeBnd.isInterfaceType());
                                error = ErrorCode.ERR_GenericConstraintNotSatisfiedNullableInterface;
                            }
                        }
                        else if (arg.IsTypeParameterType())
                        {
                            // Type variables can satisfy bounds through boxing and type variable conversions
                            Debug.Assert(!arg.IsRefType());
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedTyVar;
                        }
                        else
                        {
                            // Value types can only satisfy bounds through boxing conversions.
                            // Note that the exceptional case of Nullable types and boxing is handled above.
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedValType;
                        }
                        errHandling.Error(error, new ErrArgRef(symErr), new ErrArg(typeBnd, ErrArgFlags.Unique), var, new ErrArgRef(arg, ErrArgFlags.Unique));
                    }
                    fError = true;
                }
            }

            // Check the newable constraint.
            if (!var.HasNewConstraint() || arg.IsValType())
            {
                return(!fError);
            }

            if (arg.isClassType())
            {
                AggregateSymbol agg = arg.AsAggregateType().getAggregate();

                // Due to late binding nature of IDE created symbols, the AggregateSymbol might not
                // have all the information necessary yet, if it is not fully bound.
                // by calling LookupAggMember, it will ensure that we will update all the
                // information necessary at least for the given method.
                checker.GetSymbolLoader().LookupAggMember(checker.GetNameManager().GetPredefName(PredefinedName.PN_CTOR), agg, symbmask_t.MASK_ALL);

                if (agg.HasPubNoArgCtor() && !agg.IsAbstract())
                {
                    return(!fError);
                }
            }
            else if (arg.IsTypeParameterType() && arg.AsTypeParameterType().HasNewConstraint())
            {
                return(!fError);
            }

            if (fReportErrors)
            {
                errHandling.ErrorRef(ErrorCode.ERR_NewConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
            }

            return(false);
        }
예제 #14
0
 protected void ErrAppendParentType(CType pType, SubstContext pctx)
 {
     if (pType.IsErrorType())
     {
         if (pType.AsErrorType().HasTypeParent())
         {
             ErrAppendType(pType.AsErrorType().GetTypeParent(), null);
             ErrAppendChar('.');
         }
         else
         {
             ErrAppendParentCore(pType.AsErrorType().GetNSParent(), pctx);
         }
     }
     else if (pType.IsAggregateType())
     {
         ErrAppendParentCore(pType.AsAggregateType().GetOwningAggregate(), pctx);
     }
     else if (pType.GetBaseOrParameterOrElementType() != null)
     {
         ErrAppendType(pType.GetBaseOrParameterOrElementType(), null);
         ErrAppendChar('.');
     }
 }