/// <summary> /// Compute k-means clusters of the data. /// </summary> /// <param name="m">The number of clusters to compute.</param> /// <returns>A description of the identified clusters.</returns> public MeansClusteringResult MeansClustering(int m) { return(Multivariate.MeansClustering(storage, m)); }
/// <summary> /// Computes the given sample raw moment. /// </summary> /// <param name="powers">The power to which each component should be raised.</param> /// <returns>The specified moment.</returns> /// <exception cref="ArgumentNullException"><paramref name="powers"/> is null.</exception> /// <exception cref="DimensionMismatchException">The length of <paramref name="powers"/> is not /// equal to the <see cref="Dimension"/> of the multivariate sample.</exception> public double RawMoment(IReadOnlyList <int> powers) { return(Multivariate.RawMoment(storage, powers)); }
/// <summary> /// Performs a principal component analysis of the data. /// </summary> /// <returns>The result of the principal component analysis.</returns> /// <exception cref="InsufficientDataException">The number of data entries (<see cref="Count"/>) is /// less than the number of variables (<see cref="Dimension"/>).</exception> /// <seealso cref="PrincipalComponentAnalysis"/> public PrincipalComponentAnalysis PrincipalComponentAnalysis() { return(Multivariate.PrincipalComponentAnalysis(storage)); }
/// <summary> /// Computes the given sample raw moment. /// </summary> /// <param name="powers">The power to which each component should be raised.</param> /// <returns>The specified moment.</returns> public double RawMoment(params int[] powers) { return(Multivariate.RawMoment(storage, powers)); }