예제 #1
0
 /// <summary>
 /// Compute k-means clusters of the data.
 /// </summary>
 /// <param name="m">The number of clusters to compute.</param>
 /// <returns>A description of the identified clusters.</returns>
 public MeansClusteringResult MeansClustering(int m)
 {
     return(Multivariate.MeansClustering(storage, m));
 }
예제 #2
0
 /// <summary>
 /// Computes the given sample raw moment.
 /// </summary>
 /// <param name="powers">The power to which each component should be raised.</param>
 /// <returns>The specified moment.</returns>
 /// <exception cref="ArgumentNullException"><paramref name="powers"/> is null.</exception>
 /// <exception cref="DimensionMismatchException">The length of <paramref name="powers"/> is not
 /// equal to the <see cref="Dimension"/> of the multivariate sample.</exception>
 public double RawMoment(IReadOnlyList <int> powers)
 {
     return(Multivariate.RawMoment(storage, powers));
 }
예제 #3
0
 /// <summary>
 /// Performs a principal component analysis of the data.
 /// </summary>
 /// <returns>The result of the principal component analysis.</returns>
 /// <exception cref="InsufficientDataException">The number of data entries (<see cref="Count"/>) is
 /// less than the number of variables (<see cref="Dimension"/>).</exception>
 /// <seealso cref="PrincipalComponentAnalysis"/>
 public PrincipalComponentAnalysis PrincipalComponentAnalysis()
 {
     return(Multivariate.PrincipalComponentAnalysis(storage));
 }
예제 #4
0
 /// <summary>
 /// Computes the given sample raw moment.
 /// </summary>
 /// <param name="powers">The power to which each component should be raised.</param>
 /// <returns>The specified moment.</returns>
 public double RawMoment(params int[] powers)
 {
     return(Multivariate.RawMoment(storage, powers));
 }