public static void testCall(string checkImage, string SearchInImage) { long matchTime; int InlierThreshold = 10; int outlier; using (Image <Gray, Byte> modelImage = new Image <Gray, byte>(checkImage)) using (Image <Gray, Byte> observedImage = new Image <Gray, byte>(SearchInImage)) //using (Image<Gray, Byte> observedImage = new Image<Gray, byte>("NoBoy3.jpg")) { //Image<Bgr, byte> result = DrawMatches.Draw(modelImage, observedImage, out matchTime); Image <Bgr, byte> result = BruteForceMatcher.Draw(modelImage, observedImage, out matchTime, out InlierThreshold, out outlier); //ImageViewer.Show(result, String.Format("Matched using {0} in {1} milliseconds", GpuInvoke.HasCuda ? "GPU" : "CPU", matchTime)); Console.WriteLine("Matched using {0} in {1} milliseconds", GpuInvoke.HasCuda ? "GPU" : "CPU", matchTime); } }
public static FindMatchResult FindMatchInSource(MatchInput matchInput) { FindMatchResult matchResult = new FindMatchResult(); long matchTime; int inLiers, outLiers; string MatchFolderPath, MatchFile, MatchAbsolutePath, MatchedFaceFile; MatchFolderPath = MatchFile = MatchedFaceFile = MatchAbsolutePath = ""; //file folders assignment MatchFolderPath = matchInput.WebFolderPath; MatchAbsolutePath = matchInput.FindInFile.DirectoryName + "\\" + "MatchFiles"; using (Image <Gray, Byte> modelImage = new Image <Gray, byte>(matchInput.MatchFile.FullName)) using (Image <Gray, Byte> observedImage = new Image <Gray, byte>(matchInput.FindInFile.FullName)) { Image <Bgr, byte> result = BruteForceMatcher.Draw(modelImage, observedImage, out matchTime, out inLiers, out outLiers); //ImageViewer.Show(result, String.Format("Matched using {0} in {1} milliseconds", GpuInvoke.HasCuda ? "GPU" : "CPU", matchTime)); if (inLiers > matchInput.InlierThreshold) { matchResult.Matched = true; MatchedFaceFile = Guid.NewGuid().ToString(); bool exists = System.IO.Directory.Exists(MatchAbsolutePath); if (!exists) { System.IO.Directory.CreateDirectory(MatchAbsolutePath); } result.Save(MatchAbsolutePath + "\\" + MatchedFaceFile + matchInput.FindInFile.Extension); } matchResult.Inliers = inLiers; matchResult.Outliers = outLiers; matchResult.FolderPath = MatchFolderPath; matchResult.AbsolutePath = MatchAbsolutePath + "\\"; matchResult.MatchedFaceFile = MatchedFaceFile; } return(matchResult); }
public static void FindMatch(Image <Gray, Byte> modelImage, Image <Gray, byte> observedImage, out long matchTime, out VectorOfKeyPoint modelKeyPoints, out VectorOfKeyPoint observedKeyPoints, out Matrix <int> indices, out Matrix <byte> mask, out HomographyMatrix homography) { int k = 2; double uniquenessThreshold = 0.8; SURFDetector surfCPU = new SURFDetector(500, false); Stopwatch watch; homography = null; #if !IOS if (GpuInvoke.HasCuda) { GpuSURFDetector surfGPU = new GpuSURFDetector(surfCPU.SURFParams, 0.01f); using (GpuImage <Gray, Byte> gpuModelImage = new GpuImage <Gray, byte>(modelImage)) //extract features from the object image using (GpuMat <float> gpuModelKeyPoints = surfGPU.DetectKeyPointsRaw(gpuModelImage, null)) using (GpuMat <float> gpuModelDescriptors = surfGPU.ComputeDescriptorsRaw(gpuModelImage, null, gpuModelKeyPoints)) using (GpuBruteForceMatcher <float> matcher = new GpuBruteForceMatcher <float>(DistanceType.L2)) { modelKeyPoints = new VectorOfKeyPoint(); surfGPU.DownloadKeypoints(gpuModelKeyPoints, modelKeyPoints); watch = Stopwatch.StartNew(); // extract features from the observed image using (GpuImage <Gray, Byte> gpuObservedImage = new GpuImage <Gray, byte>(observedImage)) using (GpuMat <float> gpuObservedKeyPoints = surfGPU.DetectKeyPointsRaw(gpuObservedImage, null)) using (GpuMat <float> gpuObservedDescriptors = surfGPU.ComputeDescriptorsRaw(gpuObservedImage, null, gpuObservedKeyPoints)) using (GpuMat <int> gpuMatchIndices = new GpuMat <int>(gpuObservedDescriptors.Size.Height, k, 1, true)) using (GpuMat <float> gpuMatchDist = new GpuMat <float>(gpuObservedDescriptors.Size.Height, k, 1, true)) using (GpuMat <Byte> gpuMask = new GpuMat <byte>(gpuMatchIndices.Size.Height, 1, 1)) using (Stream stream = new Stream()) { matcher.KnnMatchSingle(gpuObservedDescriptors, gpuModelDescriptors, gpuMatchIndices, gpuMatchDist, k, null, stream); indices = new Matrix <int>(gpuMatchIndices.Size); mask = new Matrix <byte>(gpuMask.Size); //gpu implementation of voteForUniquess using (GpuMat <float> col0 = gpuMatchDist.Col(0)) using (GpuMat <float> col1 = gpuMatchDist.Col(1)) { GpuInvoke.Multiply(col1, new MCvScalar(uniquenessThreshold), col1, stream); GpuInvoke.Compare(col0, col1, gpuMask, CMP_TYPE.CV_CMP_LE, stream); } observedKeyPoints = new VectorOfKeyPoint(); surfGPU.DownloadKeypoints(gpuObservedKeyPoints, observedKeyPoints); //wait for the stream to complete its tasks //We can perform some other CPU intesive stuffs here while we are waiting for the stream to complete. stream.WaitForCompletion(); gpuMask.Download(mask); gpuMatchIndices.Download(indices); if (GpuInvoke.CountNonZero(gpuMask) >= 4) { int nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20); if (nonZeroCount >= 4) { homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 2); } } watch.Stop(); } } } else #endif { //extract features from the object image modelKeyPoints = new VectorOfKeyPoint(); Matrix <float> modelDescriptors = surfCPU.DetectAndCompute(modelImage, null, modelKeyPoints); watch = Stopwatch.StartNew(); // extract features from the observed image observedKeyPoints = new VectorOfKeyPoint(); Matrix <float> observedDescriptors = surfCPU.DetectAndCompute(observedImage, null, observedKeyPoints); BruteForceMatcher <float> matcher = new BruteForceMatcher <float>(DistanceType.L2); matcher.Add(modelDescriptors); indices = new Matrix <int>(observedDescriptors.Rows, k); using (Matrix <float> dist = new Matrix <float>(observedDescriptors.Rows, k)) { matcher.KnnMatch(observedDescriptors, indices, dist, k, null); mask = new Matrix <byte>(dist.Rows, 1); mask.SetValue(255); Features2DToolbox.VoteForUniqueness(dist, uniquenessThreshold, mask); } int nonZeroCount = CvInvoke.cvCountNonZero(mask); if (nonZeroCount >= 4) { nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20); if (nonZeroCount >= 4) { homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 2); } } watch.Stop(); } matchTime = watch.ElapsedMilliseconds; }