예제 #1
0
        public static Matrix<double> Scale(Matrix<double> input)
        {
            int n = input.RowCount;

            Matrix<double> p = DenseMatrix.Build.DenseIdentity(n) - DenseMatrix.Create(n,n, (_, __) => 1.0 / n);

            Matrix<double> a = -.5 * input.PointwiseMultiply(input);
            Matrix<double> b = p.Multiply(p.Multiply(a));
            b = (b + b.Transpose()).Divide(2.0);
            var evd = b.Evd();
            Vector<double> E = DenseVector.OfEnumerable(evd.EigenValues.Select(x => x.Real));
            Matrix<double> V = evd.EigenVectors;


            DenseVector i = DenseVector.Create(E.Count, x => x);
            Sorting.Sort(E, i);
            

            var e = DenseVector.OfEnumerable(E.Reverse());
            i = DenseVector.OfEnumerable(i.Reverse());

            Vector keep = DenseVector.Create(e.Count(x => x > 0.000000001), _ => 0);
            int counter = 0;
            for (int j = 0; j < e.Count; j++)
            {
                if (e[j] > 0.000000001)
                {
                    keep[j] = counter;
                    counter++;
                }
            }

            Matrix<double> Y;
            if (e.Count(x => x > 0.000000001) == 0)
            {
                Y = DenseMatrix.Create(n, n, (_, __) => 0);
            }
            else
            {
                Y = DenseMatrix.Create(V.RowCount, keep.Count, (_, __) => 0);
                for (int j = 0; j < keep.Count; j++)
                {
                    Y.SetColumn(j, (V.Column((int)(i[(int)(keep[j] + 0.5)] + 0.5)).ToArray()));
                }
                Y = Y.Multiply(DiagonalMatrix.OfDiagonal(keep.Count, keep.Count, e.Where((x, j) => keep.Contains(j)).Select(Math.Sqrt)));
            }

            //Enforce a sign convention on the solution -- the largest element
            //in each coordinate will have a positive sign.
            List<int> maxIndices = Y.EnumerateColumns().Select(x => x.AbsoluteMaximumIndex()).ToList();
            var colSigns = maxIndices.Select((x, j) => Math.Sign(Y[x, j])).ToList();
            for (int j = 0; j < Y.ColumnCount; j++)
            {
                Y.SetColumn(j, Y.Column(j) * colSigns[j]);
            }

            return Y;
        }
예제 #2
0
        public void Test(Matrix<double> targetPattern, double activationCriterion, double inactivationCriterion, out List<double> meanSEList, out List<double> meanSSList, out List<double> meanCEList, out List<bool> correctnessList, out List<double> meanActivationList, out List<double> meanAUActivationList, out List<double> meanIUActivationList)
        {
            meanSEList = ((targetPattern - LayerActivationMatrix).PointwisePower(2).RowSums() / 2.0 / UnitCount).ToList();
            meanSSList = ((((LayerActivationMatrix.PointwiseMultiply(LayerActivationMatrix.PointwiseLog()) + ((1 - LayerActivationMatrix).PointwiseMultiply((1 - LayerActivationMatrix).PointwiseLog()))) / Math.Log(2)) + 1).RowSums() / UnitCount).ToList();
            meanCEList = (((targetPattern.PointwiseMultiply(LayerActivationMatrix.PointwiseLog()) + (1 - targetPattern).PointwiseMultiply((1 - LayerActivationMatrix).PointwiseLog())) / Math.Log(Math.E)).RowSums() * -1 / UnitCount).ToList();
            meanActivationList = (LayerActivationMatrix.RowSums() / UnitCount).ToList();

            correctnessList = new List<bool>(LayerActivationMatrix.RowCount);
            meanAUActivationList = new List<double>(LayerActivationMatrix.RowCount);
            meanIUActivationList = new List<double>(LayerActivationMatrix.RowCount);
            for (int index = 0; index < LayerActivationMatrix.RowCount; index++)
            {
                correctnessList.Add(true);
                meanAUActivationList.Add(0);
                meanIUActivationList.Add(0);
            }

            Matrix<double> activeUnitMatrix = DenseMatrix.Create(LayerActivationMatrix.RowCount, LayerActivationMatrix.ColumnCount, 0);
            Matrix<double> inactiveUnitMatrix = DenseMatrix.Create(LayerActivationMatrix.RowCount, LayerActivationMatrix.ColumnCount, 0);
            Matrix<double> countActive = DenseMatrix.Create(LayerActivationMatrix.RowCount, 1, 0);
            Matrix<double> countInactive = DenseMatrix.Create(LayerActivationMatrix.RowCount, 1, 0);
            for (int rowIndex = 0;rowIndex<LayerActivationMatrix.RowCount;rowIndex++)
            {
                for (int columnIndex = 0; columnIndex < LayerActivationMatrix.ColumnCount; columnIndex++)
                {
                    if (targetPattern[rowIndex, columnIndex] > activationCriterion)
                    {
                        if(LayerActivationMatrix[rowIndex, columnIndex] < activationCriterion) correctnessList[rowIndex] = false;
                        activeUnitMatrix[rowIndex, columnIndex] = 1;
                        countActive[rowIndex, 0]++;
                    }
                    if (targetPattern[rowIndex, columnIndex] < inactivationCriterion)
                    {
                        if (LayerActivationMatrix[rowIndex, columnIndex] > activationCriterion) correctnessList[rowIndex] = false;
                        inactiveUnitMatrix[rowIndex, columnIndex] = 1;
                        countInactive[rowIndex, 0]++;
                    }
                }
            }
            meanAUActivationList = LayerActivationMatrix.PointwiseMultiply(activeUnitMatrix).RowSums().ToList();
            meanIUActivationList = LayerActivationMatrix.PointwiseMultiply(inactiveUnitMatrix).RowSums().ToList();
            for (int rowIndex = 0; rowIndex < LayerActivationMatrix.RowCount; rowIndex++)
            {
                if (countActive[rowIndex, 0] > 0) meanAUActivationList[rowIndex] = meanAUActivationList[rowIndex] / countActive[rowIndex,0];
                else
                {
                    meanAUActivationList[rowIndex] = double.NaN;
                }
                if (countInactive[rowIndex, 0] > 0) meanIUActivationList[rowIndex] = meanIUActivationList[rowIndex] / countInactive[rowIndex,0];
                else
                {
                    meanIUActivationList[rowIndex] = double.NaN;
                }
            }
        }