예제 #1
0
        private void TrainWithEvolution(TrainingSuite trainingSuite, int trainingDataBegin, int trainingDataEnd, Network[] population, ComputeDevice calculator)
        {
            Dictionary <Network, float> error_acc = new Dictionary <Network, float>();

            for (int i = 0; i < population.Length; ++i)
            {
                if (i != 0) //Keep the best performer
                {
                    population[i].ApplyRandomNudge(trainingSuite.config.evolutionMutationRate);
                }
                error_acc.Add(population[i], 0);
            }


            for (int i = trainingDataBegin; i < trainingDataEnd; ++i)
            {
                foreach (var n in population)
                {
                    float[] result = n.Compute(trainingSuite.trainingData[i].input, calculator);
                    float   error  = trainingSuite.config.costFunction.CalculateSummedError(result, trainingSuite.trainingData[i].desiredOutput);
                    error_acc[n] += error;
                }
            }

            Array.Sort(population, (a, b) => { return(error_acc[a].CompareTo(error_acc[b])); });

            int population_cutoff = Math.Max(1, (int)((float)population.Length * trainingSuite.config.evolutionSurvivalRate));

            for (int i = population_cutoff; i < population.Length; ++i)
            {
                population[i] = population[i % population_cutoff].Copy();
            }
        }
예제 #2
0
        private void TrainWithBackpropagation(TrainingSuite trainingSuite, int trainingDataBegin, int trainingDataEnd, ComputeDevice calculator)
        {
            //Calculate the accumulated gradient. Accumulated means, that the gradient has to be divided by the number of samples in the minibatch.
            List <List <NeuronData> > accumulatedGradient = null;

            accumulatedGradient = calculator.CalculateAccumulatedGradientForMinibatch(this, trainingSuite, trainingDataBegin, trainingDataEnd);
            float sizeDivisor = (float)(trainingDataEnd - trainingDataBegin) / (float)trainingSuite.trainingData.Count;

            //Calculate regularization terms based on the training configuration
            float regularizationTerm1     = 1.0f;
            float regularizationTerm2Base = 0.0f;

            if (trainingSuite.config.regularization == TrainingConfig.Regularization.L2)
            {
                regularizationTerm1 = 1.0f - trainingSuite.config.learningRate * (trainingSuite.config.regularizationLambda / (float)trainingSuite.trainingData.Count);
            }
            else if (trainingSuite.config.regularization == TrainingConfig.Regularization.L1)
            {
                regularizationTerm2Base = -((trainingSuite.config.learningRate * (trainingSuite.config.regularizationLambda / (float)trainingSuite.trainingData.Count)));
            }

            bool applyRegularizationTerm2 = trainingSuite.config.regularization == TrainingConfig.Regularization.L1;

            //Apply accumulated gradient to network (Gradient descent)
            float sizeDivisorAndLearningRate = sizeDivisor * trainingSuite.config.learningRate;

            for (int i = 0; i < layers.Count; ++i)
            {
                var layer            = layers[i];
                var weightsPerNeuron = layer.GetWeightsPerNeuron();
                var layerNeuronCount = layer.GetNeuronCount();
                var weightMx         = layer.weightMx;
                var biases           = layer.biases;

                for (int j = 0; j < layerNeuronCount; ++j)
                {
                    var layerGradientWeights = accumulatedGradient[i][j].weights;
                    biases[j] -= accumulatedGradient[i][j].bias * sizeDivisorAndLearningRate;
                    for (int w = 0; w < weightsPerNeuron; ++w)
                    {
                        weightMx[j, w] = regularizationTerm1 * weightMx[j, w] - layerGradientWeights[w] * sizeDivisorAndLearningRate;
                        if (applyRegularizationTerm2)
                        {
                            weightMx[j, w] -= regularizationTerm2Base * Utils.Sign(weightMx[j, w]);
                        }
                    }
                }
            }
        }
예제 #3
0
 public abstract unsafe List <List <NeuronData> > CalculateAccumulatedGradientForMinibatch(Network network, TrainingSuite suite, int trainingDataBegin, int trainingDataEnd);
예제 #4
0
        public override List <List <NeuronData> > CalculateAccumulatedGradientForMinibatch(Network network, TrainingSuite suite, int trainingDataBegin, int trainingDataEnd)
        {
            int trainingSamples = trainingDataEnd - trainingDataBegin;
            var ret             = Utils.CreateGradientVector(network);

            for (int i = trainingDataBegin; i < trainingDataEnd; i++)
            {
                CalculateGradientForSingleTrainingExample(network, suite.config.costFunction, ref ret, suite.trainingData[i].input, suite.trainingData[i].desiredOutput);
            }
            return(ret);
        }
예제 #5
0
        /// <summary>
        /// Trains the network using the given training suite and calculator
        /// The functions returns immediately with a promise object that can be used to monitor progress.
        /// Note: Using the network during training is not permitted.
        /// </summary>
        /// <param name="trainingSuite">The training suite to be used</param>
        /// <param name="calculator">The calculator (containing a compute device) to be used for calculations</param>
        /// <returns>A promise that can be used to check the </returns>
        public TrainingPromise Train(TrainingSuite trainingSuite, ComputeDevice calculator)
        {
            if (trainingPromise != null)
            {
                throw new Exception("Cannot perform operation while training is in progress!");
            }

            trainingPromise = new TrainingPromise();

            if (trainingSuite.config.epochs < 1)
            {
                trainingPromise.SetProgress(1, 0);
                return(trainingPromise);
            }

            trainingThread = new Thread(() => {
                for (int currentEpoch = 0; currentEpoch < trainingSuite.config.epochs; currentEpoch++)
                {
                    if (trainingPromise.IsStopAtNextEpoch())
                    {
                        break;
                    }

                    if (trainingSuite.config.shuffleTrainingData)
                    {
                        Utils.ShuffleList(ref trainingSuite.trainingData);
                    }

                    int trainingDataBegin = 0;
                    int trainingDataEnd   = trainingSuite.config.UseMinibatches() ? Math.Min(trainingSuite.config.miniBatchSize, trainingSuite.trainingData.Count) : trainingSuite.trainingData.Count;

                    while (true)
                    {
                        //Calculate the accumulated gradient. Accumulated means, that the gradient has to be divided by the number of samples in the minibatch.
                        List <List <NeuronData> > accumulatedGradient = null;
                        accumulatedGradient = calculator.CalculateAccumulatedGradientForMinibatch(this, trainingSuite, trainingDataBegin, trainingDataEnd);
                        float sizeDivisor   = (float)(trainingDataEnd - trainingDataBegin) / (float)trainingSuite.trainingData.Count;

                        //Calculate regularization terms based on the training configuration
                        float regularizationTerm1     = 1.0f;
                        float regularizationTerm2Base = 0.0f;
                        if (trainingSuite.config.regularization == TrainingSuite.TrainingConfig.Regularization.L2)
                        {
                            regularizationTerm1 = 1.0f - trainingSuite.config.learningRate * (trainingSuite.config.regularizationLambda / (float)trainingSuite.trainingData.Count);
                        }
                        else if (trainingSuite.config.regularization == TrainingSuite.TrainingConfig.Regularization.L1)
                        {
                            regularizationTerm2Base = -((trainingSuite.config.learningRate * (trainingSuite.config.regularizationLambda / (float)trainingSuite.trainingData.Count)));
                        }

                        bool applyRegularizationTerm2 = trainingSuite.config.regularization == TrainingSuite.TrainingConfig.Regularization.L1;

                        //Apply accumulated gradient to network (Gradient descent)
                        float sizeDivisorAndLearningRate = sizeDivisor * trainingSuite.config.learningRate;
                        for (int i = 0; i < layers.Count; ++i)
                        {
                            var layer            = layers[i];
                            var weightsPerNeuron = layer.GetWeightsPerNeuron();
                            var layerNeuronCount = layer.GetNeuronCount();
                            var weightMx         = layer.weightMx;
                            var biases           = layer.biases;

                            for (int j = 0; j < layerNeuronCount; ++j)
                            {
                                var layerGradientWeights = accumulatedGradient[i][j].weights;
                                biases[j] -= accumulatedGradient[i][j].bias * sizeDivisorAndLearningRate;
                                for (int w = 0; w < weightsPerNeuron; ++w)
                                {
                                    weightMx[j, w] = regularizationTerm1 * weightMx[j, w] - layerGradientWeights[w] * sizeDivisorAndLearningRate;
                                    if (applyRegularizationTerm2)
                                    {
                                        weightMx[j, w] -= regularizationTerm2Base * Utils.Sign(weightMx[j, w]);
                                    }
                                }
                            }
                        }

                        //Set up the next minibatch, or quit the loop if we're done.
                        if (trainingSuite.config.UseMinibatches())
                        {
                            if (trainingDataEnd >= trainingSuite.trainingData.Count)
                            {
                                break;
                            }

                            trainingPromise.SetProgress(((float)trainingDataEnd + ((float)currentEpoch * (float)trainingSuite.trainingData.Count)) / ((float)trainingSuite.trainingData.Count * (float)trainingSuite.config.epochs), currentEpoch + 1);

                            trainingDataBegin = trainingDataEnd;
                            trainingDataEnd   = Math.Min(trainingDataEnd + trainingSuite.config.miniBatchSize, trainingSuite.trainingData.Count);
                        }
                        else
                        {
                            break;
                        }
                    }
                }

                calculator.FlushWorkingCache();                                  //Release any cache that the mathLib has built up.

                trainingPromise.SetProgress(1, trainingPromise.GetEpochsDone()); //Report that the training is finished
                trainingPromise = null;
            });

            trainingThread.Start();


            return(trainingPromise);
        }
예제 #6
0
        /// <summary>
        /// Trains the network using the given training suite and calculator
        /// The functions returns immediately with a promise object that can be used to monitor progress.
        /// Note: Using the network during training is not permitted.
        /// </summary>
        /// <param name="trainingSuite">The training suite to be used</param>
        /// <param name="calculator">The calculator (containing a compute device) to be used for calculations</param>
        /// <returns>A promise that can be used to check the </returns>
        public TrainingPromise Train(TrainingSuite trainingSuite, ComputeDevice calculator)
        {
            if (trainingPromise != null)
            {
                throw new Exception("Cannot perform operation while training is in progress!");
            }

            trainingPromise = new TrainingPromise();

            if (trainingSuite.config.epochs < 1)
            {
                trainingPromise.SetProgress(1, 0);
                return(trainingPromise);
            }

            trainingThread = new Thread(() => {
                Network[] evolution_population = null;
                if (trainingSuite.config.trainingMode == TrainingConfig.TrainingMode.Evolution)
                {
                    evolution_population = new Network[trainingSuite.config.evolutionPopulationSize];
                    for (int i = 0; i < evolution_population.Length; ++i)
                    {
                        evolution_population[i] = new Network(this);
                    }
                }

                for (int currentEpoch = 0; currentEpoch < trainingSuite.config.epochs; currentEpoch++)
                {
                    if (trainingPromise.IsStopAtNextEpoch())
                    {
                        break;
                    }

                    if (trainingSuite.config.shuffleTrainingData)
                    {
                        Utils.ShuffleList(ref trainingSuite.trainingData);
                    }

                    int trainingDataBegin = 0;
                    int trainingDataEnd   = trainingSuite.config.UseMinibatches() ? Math.Min(trainingSuite.config.miniBatchSize, trainingSuite.trainingData.Count) : trainingSuite.trainingData.Count;

                    while (true)
                    {
                        switch (trainingSuite.config.trainingMode)
                        {
                        case TrainingConfig.TrainingMode.Backpropagation:
                            TrainWithBackpropagation(trainingSuite, trainingDataBegin, trainingDataEnd, calculator);
                            break;

                        case TrainingConfig.TrainingMode.Evolution:
                            TrainWithEvolution(trainingSuite, trainingDataBegin, trainingDataEnd, evolution_population, calculator);
                            break;

                        default:
                            //error
                            break;
                        }

                        //Set up the next minibatch, or quit the loop if we're done.
                        if (trainingSuite.config.UseMinibatches())
                        {
                            if (trainingDataEnd >= trainingSuite.trainingData.Count)
                            {
                                break;
                            }

                            trainingPromise.SetProgress(((float)trainingDataEnd + ((float)currentEpoch * (float)trainingSuite.trainingData.Count)) / ((float)trainingSuite.trainingData.Count * (float)trainingSuite.config.epochs), currentEpoch + 1);

                            trainingDataBegin = trainingDataEnd;
                            trainingDataEnd   = Math.Min(trainingDataEnd + trainingSuite.config.miniBatchSize, trainingSuite.trainingData.Count);
                        }
                        else
                        {
                            break;
                        }
                    }
                }

                calculator.FlushWorkingCache(); //Release any cache that the mathLib has built up.

                if (trainingSuite.config.trainingMode == TrainingConfig.TrainingMode.Evolution)
                {
                    this.layers          = evolution_population[0].layers; //move the best performing layer without copying
                    evolution_population = null;
                }

                trainingPromise.SetProgress(1, trainingPromise.GetEpochsDone()); //Report that the training is finished
                trainingPromise = null;
            });

            trainingThread.Start();


            return(trainingPromise);
        }
예제 #7
0
 public override List <List <NeuronData> > CalculateAccumulatedGradientForMinibatch(Network network, TrainingSuite suite, int trainingDataBegin, int trainingDataEnd)
 {
     throw new NotImplementedException();
 }