IList <PreProcessedImage> ITrainModel.startTrainingModel() { IList <PreProcessedImage> result = new List <PreProcessedImage>(this.trainingModel.Sum(item => item.listOfImages.Count)); using (PreProcess preProcesAlgorithm = new PreProcess(null)) { int count = 0; foreach (ImageCategory imageCategory in this.trainingModel) { Console.WriteLine(count++ + " Training category: " + imageCategory.leafCategory + "total files: " + imageCategory.listOfImages.Count); foreach (string imagePath in imageCategory.listOfImages) { PreProcessedImage preProcessedImage = preProcesAlgorithm.Execute(imagePath, imageCategory.leafCategory); result.Add(preProcessedImage); } } } return(result); }
public PreProcessedImage Execute(string imagePath, string category) { PreProcessedImage result = new PreProcessedImage(); result.FilePath = imagePath; result.Category = category; using (PreProcess preProcessAlgorithm = new PreProcess(new Image <Bgr, Byte>(imagePath))) using (Image <Gray, Byte> grayScaleImage = preProcessAlgorithm._ImageToGrayScaleUsingConvert()) { using (FeatureExtractAlgorithm featureSet = new FeatureExtractAlgorithm(grayScaleImage)) using (Mat canny = new Mat()) using (VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint()) { KeyPoints descriptor = featureSet.SIFTDescriptor(); result.KeyPoints = descriptor; result.ContourArea = 0; CvInvoke.Canny(grayScaleImage, canny, 100, 50); int[,] hierarchy = CvInvoke.FindContourTree(canny, contours, ChainApproxMethod.ChainApproxSimple); result.NumberOfContours = contours.Size; double maxArea = double.MinValue; int maxIndex = -1; for (int index = 0; index < contours.Size; index++) { double area = CvInvoke.ContourArea(contours[index]); result.ContourArea += area; if (area > maxArea) { maxArea = area; maxIndex = index; } } result.Contour = new VectorOfPoint(); CvInvoke.ApproxPolyDP(contours[maxIndex], result.Contour, CvInvoke.ArcLength(contours[maxIndex], true) * 0.02, true); return(result); } } }
private List <MatcherResult> QueryImage(string filePath, string expectedCategory) { using (PreProcess preProcessAlgorithm = new PreProcess(null)) { PreProcessedImage preProcessedQueryImage = preProcessAlgorithm.Execute(filePath, expectedCategory); List <MatcherResult> finalResultSet = new List <MatcherResult>(this.trainingDataset.Count); DescriptorMatcher learningAlgo = new DescriptorMatcher(); foreach (PreProcessedImage trainingData in this.trainingDataset) { try { using (BFMatcher trainingMatcher = new BFMatcher(DistanceType.L1)) { double areaRatio = trainingData.ContourArea / preProcessedQueryImage.ContourArea; int contourDelta = trainingData.NumberOfContours - preProcessedQueryImage.NumberOfContours; //if (areaRatio < 0.1 || areaRatio > 5) //{ // continue; //} //if(contourDelta > 100 || contourDelta < -100) //{ // continue; //} trainingMatcher.Add(trainingData.KeyPoints.Descriptor); MatcherResult result = learningAlgo.knnMatch(preProcessedQueryImage.KeyPoints, trainingMatcher, trainingData.Category, 300, trainingData); result.ContourRatio = CvInvoke.MatchShapes(trainingData.Contour, preProcessedQueryImage.Contour, Emgu.CV.CvEnum.ContoursMatchType.I3); result.AreaRatio = areaRatio; result.ContoursDelta = contourDelta; //Console.WriteLine("QueryCategory: {0}, {1}", preProcessedQueryImage.Category, result.ToString()); finalResultSet.Add(result); } } catch (Exception exception) { //Console.WriteLine(exception); } } //IEnumerable<MatcherResult> highConfidenceResults = finalResultSet.Where(item => item.MatchingPoints >= 3); //finalResultSet = highConfidenceResults.ToList(); //// If there are clusters with size great than or equal to 3 , then they have a very high probability of being correct. //if (highConfidenceResults.Any()) //{ // //Console.WriteLine("High confidence:" + highConfidenceResults.Count() + " : " + highConfidenceResults.Max(item => item.MatchingPoints)); // finalResultSet = highConfidenceResults.ToList(); //} //else //{ // finalResultSet = finalResultSet // .Where(item => item.MatchingPoints > 0) // .GroupBy(item => item.Category) // .Select(item => // new MatcherResult() // { // Category = item.Key, // MatchingPoints = item.Sum(result => result.MatchingPoints), // MatchDistance = item.Sum(result => result.MatchDistance) // }) // .ToList(); //} double totalWeightDistance = finalResultSet.Sum(item => item.MatchDistanceWeight); double totalWeightPoints = finalResultSet.Sum(item => item.MatchingPointsWeight); //finalResultSet = finalResultSet // .Where(item => item.MatchingPoints > 0) // .GroupBy(item => item.Category) // .Select(item => // new MatcherResult() // { // Category = item.Key, // MatchingPoints = item.Sum(result => result.MatchingPoints * result.MatchingPointsWeight) / totalWeightPoints, // MatchDistance = item.Sum(result => result.MatchDistance * result.MatchDistanceWeight) / totalWeightDistance // }) // .ToList(); finalResultSet = finalResultSet .Where(item => item.MatchingPoints > 0) .GroupBy(item => item.Category) .Select(item => new MatcherResult() { Category = item.Key, MatchingPoints = item.Sum(result => result.MatchingPointsWeight) / totalWeightPoints, MatchDistance = item.Sum(result => result.MatchDistanceWeight) / totalWeightDistance }) .ToList(); finalResultSet = finalResultSet.Where(item => item.MatchingPoints > 0).OrderByDescending(item => item, new MatcherResultWeightedComparer()).Take(3).ToList(); return(finalResultSet); } }
private List <MDMatch> clusterBasedOnPoseEstimation(List <MDMatch> matches, KeyPoints queryKeyPoints, PreProcessedImage trainingData) { // If no training data is provided then we cannot compute pose (LeafAnalysisV1), hence just return back the original set if (trainingData == null || matches == null || !matches.Any()) { return(matches); } Dictionary <MDMatch, List <MDMatch> > clusters = new Dictionary <MDMatch, List <MDMatch> >(matches.Count); List <PoseEstimate> poseEstimates = new List <PoseEstimate>(matches.Count); foreach (MDMatch match in matches) { MKeyPoint queryKeyPoint = queryKeyPoints.Points[match.QueryIdx]; MKeyPoint trainingKeyPoint = trainingData.KeyPoints.Points[match.TrainIdx]; PoseEstimate estimate = new PoseEstimate(); estimate.Match = match; estimate.Dx = trainingKeyPoint.Point.X - queryKeyPoint.Point.X; estimate.Dy = trainingKeyPoint.Point.Y - queryKeyPoint.Point.Y; estimate.Ds = trainingKeyPoint.Octave / queryKeyPoint.Octave; estimate.Do = trainingKeyPoint.Angle - queryKeyPoint.Angle; poseEstimates.Add(estimate); // Initialize clusters for each individual match // Next we will add other matches which belong to this cluster clusters.Add(match, new List <MDMatch>(new MDMatch[] { match })); } const double errorThreshold = 5; // Compute cluster membership foreach (PoseEstimate estimate in poseEstimates) { foreach (PoseEstimate otherEstimate in poseEstimates) { // Ignore self if (estimate == otherEstimate) { continue; } double error = estimate.RMSE(otherEstimate); //Console.WriteLine("Error: " + trainingData.Category + ": " + error); if (error < errorThreshold) { clusters[estimate.Match].Add(otherEstimate.Match); } } } // Finally pick the largest cluster List <MDMatch> result = null; int sizeOfCluster = -1;; foreach (KeyValuePair <MDMatch, List <MDMatch> > cluster in clusters) { if (cluster.Value.Count == sizeOfCluster) { // Tie breaker: choose the cluster with smaller overall distances if (result.Sum(item => item.Distance) > cluster.Value.Sum(item => item.Distance)) { result = cluster.Value; } } else if (cluster.Value.Count > sizeOfCluster) { sizeOfCluster = cluster.Value.Count; result = cluster.Value; } } return(result); }
public MatcherResult knnMatch(KeyPoints queryDescriptor, BFMatcher matcher, string leafCategory, int distanceCutoff = int.MaxValue, PreProcessedImage trainingData = null) { MatcherResult result = new MatcherResult(); result.Category = leafCategory; using (VectorOfVectorOfDMatch vectorMatchesForSift = new VectorOfVectorOfDMatch()) { matcher.KnnMatch(queryDescriptor.Descriptor, vectorMatchesForSift, 2, null); int numberOfMatches = 0; Dictionary <int, int> counts = new Dictionary <int, int>(); List <MDMatch> goodMatches = new List <MDMatch>(vectorMatchesForSift.Size); for (int i = 0; i < vectorMatchesForSift.Size; i++) { // Do Ratio test: Reject matches where ratio of closest match with second closest if greater than 0.8 if ( (vectorMatchesForSift[i].Size == 1 || vectorMatchesForSift[i][0].Distance < 0.75 * vectorMatchesForSift[i][1].Distance) && vectorMatchesForSift[i][0].Distance < distanceCutoff) { goodMatches.Add(vectorMatchesForSift[i][0]); numberOfMatches++; } } //goodMatches = clusterBasedOnPoseEstimation(goodMatches, queryDescriptor, trainingData); int maxResults = int.MaxValue; result.MatchingPoints = goodMatches.Count; if (!goodMatches.Any()) { result.MatchDistance = float.MaxValue; result.AverageDistance = 0; result.MatchDistanceWeight = 0; result.MatchingPointsWeight = 0; } else { result.MatchDistance = goodMatches.OrderBy(item => item.Distance).Take(maxResults).Sum(item => item.Distance); result.AverageDistance = result.MatchDistance / result.MatchingPoints; result.MatchDistanceWeight = 1 / Math.Pow(result.AverageDistance, 2); result.MatchingPointsWeight = result.MatchingPoints * result.MatchingPoints; } } return(result); }