public ClusteringResult Cluster(IUnlabeledExampleCollection <SparseVector <double> > dataset) { Utils.ThrowException(dataset == null ? new ArgumentNullException("dataset") : null); Utils.ThrowException(dataset.Count < NumLeaves ? new ArgumentValueException("dataset") : null); ClusteringResult clusters = mKMeansClustering.Cluster(dataset); UnlabeledDataset <SparseVector <double> > centroids = new UnlabeledDataset <SparseVector <double> >(); foreach (Cluster cluster in clusters.Roots) { SparseVector <double> centroid = ModelUtils.ComputeCentroid(cluster.Items, dataset, CentroidType.NrmL2); centroids.Add(centroid); centroid = Trim(centroid, 1000, 0.8); cluster.ClusterInfo = 1; // cluster level } SparseMatrix <double> simMtx = ModelUtils.GetDotProductSimilarity(centroids, /*thresh=*/ 0, /*fullMatrix=*/ false); SparseMatrix <double> clustMtxTr = ModelUtils.GetTransposedMatrix(centroids); int iter = 1; while (clusters.Roots.Count > 1) { Console.WriteLine("Iteration {0} ...", iter++); int idx1, idx2; FindMaxSim(simMtx, out idx1, out idx2); Update(simMtx, clustMtxTr, clusters.Roots.Count, idx1, idx2, clusters.Roots.Inner, dataset, /*damping=*/ 0.9); Console.WriteLine(simMtx.ToString("E0.00")); Console.WriteLine(); } return(clusters); }
public void Train(ILabeledExampleCollection <LblT, SparseVector <double> > dataset) { Utils.ThrowException(dataset == null ? new ArgumentNullException("dataset") : null); Utils.ThrowException(dataset.Count == 0 ? new ArgumentValueException("dataset") : null); mDatasetMtx = ModelUtils.GetTransposedMatrix(ModelUtils.ConvertToUnlabeledDataset(dataset)); mLabels = new ArrayList <LblT>(); foreach (LabeledExample <LblT, SparseVector <double> > labeledExample in dataset) { mLabels.Add(labeledExample.Label); } }
internal void kMeansMainLoop(IUnlabeledExampleCollection <SparseVector <double> > dataset, ArrayList <CentroidData> centroids, out double clustQual) { double[][] dotProd = new double[centroids.Count][]; SparseMatrix <double> dataMtx = ModelUtils.GetTransposedMatrix(dataset); int iter = 0; double bestClustQual = 0; while (true) { iter++; mLogger.Trace("Cluster", "Iteration {0} ...", iter); // assign items to clusters Assign(centroids, dataMtx, dataset.Count, /*offs=*/ 0, out clustQual); mLogger.Trace("Cluster", "Quality: {0:0.0000}", clustQual); // update centroids Update(dataset, centroids); // check if done if (iter > 1 && clustQual - bestClustQual <= mEps) { break; } bestClustQual = clustQual; } }
public ClusteringResult Cluster(int numOutdated, IUnlabeledExampleCollection <SparseVector <double> > batch) { Utils.ThrowException(batch == null ? new ArgumentNullException("batch") : null); Utils.ThrowException(numOutdated < 0 ? new ArgumentOutOfRangeException("numOutdated") : null); if (mDataset == null) { // initialize mLogger.Trace("Cluster", "Initializing ..."); Utils.ThrowException(numOutdated > 0 ? new ArgumentOutOfRangeException("numOutdated") : null); //Utils.ThrowException(batch.Count == 0 ? new ArgumentValueException("batch") : null); if (batch.Count == 0) { return(new ClusteringResult()); } kMeans(batch, Math.Min(mK, batch.Count)); mDataset = new UnlabeledDataset <SparseVector <double> >(batch); foreach (CentroidData centroid in mCentroids) { centroid.Tag = mTopicId++; } //OutputState(); } else { // update clusters Utils.ThrowException(numOutdated > mDataset.Count ? new ArgumentOutOfRangeException("numOutdated") : null); if (numOutdated == 0 && batch.Count == 0) { return(GetClusteringResult()); } mLogger.Trace("Cluster", "Updating clusters ..."); // assign new instances double dummy; Assign(mCentroids, ModelUtils.GetTransposedMatrix(batch), batch.Count, /*offs=*/ mDataset.Count, out dummy); mDataset.AddRange(batch); // remove outdated instances foreach (CentroidData centroid in mCentroids) { foreach (int item in centroid.CurrentItems) { if (item >= numOutdated) { centroid.Items.Add(item); } } centroid.Update(mDataset); centroid.UpdateCentroidLen(); } mDataset.RemoveRange(0, numOutdated); ArrayList <CentroidData> centroidsNew = new ArrayList <CentroidData>(mCentroids.Count); foreach (CentroidData centroid in mCentroids) { if (centroid.CurrentItems.Count > 0) { centroidsNew.Add(centroid); Set <int> tmp = new Set <int>(); foreach (int idx in centroid.CurrentItems) { tmp.Add(idx - numOutdated); } centroid.CurrentItems.Inner.SetItems(tmp); } } if (centroidsNew.Count == 0) // reset { mCentroids = null; mDataset = null; return(new ClusteringResult()); } mCentroids = centroidsNew; // execute main loop kMeansMainLoop(mDataset, mCentroids); //OutputState(); } // adjust k double minQual; // *** not used at the moment int minQualIdx; double qual = GetClustQual(out minQual, out minQualIdx); if (qual < mQualThresh) { while (qual < mQualThresh) // split cluster at minQualIdx { mLogger.Trace("Cluster", "Increasing k to {0} ...", mCentroids.Count + 1); mCentroids.Add(mCentroids[minQualIdx].Clone()); mCentroids.Last.Tag = mTopicId++; kMeansMainLoop(mDataset, mCentroids); if (mCentroids.Last.CurrentItems.Count > mCentroids[minQualIdx].CurrentItems.Count) { // swap topic identifiers object tmp = mCentroids.Last.Tag; mCentroids.Last.Tag = mCentroids[minQualIdx].Tag; mCentroids[minQualIdx].Tag = tmp; } qual = GetClustQual(out minQual, out minQualIdx); //OutputState(); } } else if (numOutdated > 0) { while (qual > mQualThresh && mCentroids.Count > 1) // join clusters { mLogger.Trace("Cluster", "Decreasing k to {0} ...", mCentroids.Count - 1); ArrayList <CentroidData> centroidsCopy = mCentroids.DeepClone(); if (mCentroids.Count == 2) // create single cluster { object topicId = mCentroids[0].CurrentItems.Count > mCentroids[1].CurrentItems.Count ? mCentroids[0].Tag : mCentroids[1].Tag; mCentroids = new ArrayList <CentroidData>(); mCentroids.Add(new CentroidData()); for (int i = 0; i < mDataset.Count; i++) { mCentroids.Last.Items.Add(i); } mCentroids.Last.Tag = topicId; mCentroids.Last.Update(mDataset); mCentroids.Last.UpdateCentroidLen(); } else { int idx1, idx2; GetMostSimilarClusters(out idx1, out idx2); CentroidData c1 = mCentroids[idx1]; CentroidData c2 = mCentroids[idx2]; object topicId = c1.CurrentItems.Count > c2.CurrentItems.Count ? c1.Tag : c2.Tag; mCentroids.RemoveAt(idx2); c1.Items.AddRange(c1.CurrentItems); c1.Items.AddRange(c2.CurrentItems); c1.Tag = topicId; c1.Update(mDataset); c1.UpdateCentroidLen(); kMeansMainLoop(mDataset, mCentroids); } qual = GetClustQual(); if (qual >= mQualThresh) { mLogger.Trace("Cluster", "Accepted solution at k = {0}.", mCentroids.Count); } else { mCentroids = centroidsCopy; } //OutputState(); } } OutputState(); return(GetClusteringResult()); }
public void Train(ILabeledExampleCollection <LblT, SparseVector <double> > dataset) { Utils.ThrowException(dataset == null ? new ArgumentNullException("dataset") : null); Utils.ThrowException(dataset.Count == 0 ? new ArgumentValueException("dataset") : null); Dictionary <LblT, CentroidData> centroids = new Dictionary <LblT, CentroidData>(mLblCmp); foreach (LabeledExample <LblT, SparseVector <double> > labeledExample in dataset) { if (!centroids.ContainsKey(labeledExample.Label)) { CentroidData centroidData = new CentroidData(); centroidData.AddToSum(labeledExample.Example); centroids.Add(labeledExample.Label, centroidData); } else { CentroidData centroidData = centroids[labeledExample.Label]; centroidData.AddToSum(labeledExample.Example); } } foreach (CentroidData cenData in centroids.Values) { cenData.UpdateCentroidLen(); } double learnRate = 1; double[][] dotProd = null; SparseMatrix <double> dsMtx = null; if (mIterations > 0) { dotProd = new double[centroids.Count][]; dsMtx = ModelUtils.GetTransposedMatrix(ModelUtils.ConvertToUnlabeledDataset(dataset)); } for (int iter = 1; iter <= mIterations; iter++) { mLogger.Info("Train", "Iteration {0} / {1} ...", iter, mIterations); // compute dot products mLogger.Info("Train", "Computing dot products ..."); int j = 0; foreach (KeyValuePair <LblT, CentroidData> labeledCentroid in centroids) { mLogger.ProgressNormal(Logger.Level.Info, /*sender=*/ this, "Train", "Centroid {0} / {1} ...", j + 1, centroids.Count); SparseVector <double> cenVec = labeledCentroid.Value.GetSparseVector(); dotProd[j] = ModelUtils.GetDotProductSimilarity(dsMtx, dataset.Count, cenVec); j++; } // classify training examples mLogger.Info("Train", "Classifying training examples ..."); int errCount = 0; for (int instIdx = 0; instIdx < dataset.Count; instIdx++) { mLogger.ProgressFast(Logger.Level.Info, /*sender=*/ this, "Train", "Example {0} / {1} ...", instIdx + 1, dataset.Count); double maxSim = double.MinValue; CentroidData assignedCentroid = null; CentroidData actualCentroid = null; LabeledExample <LblT, SparseVector <double> > labeledExample = dataset[instIdx]; SparseVector <double> vec = labeledExample.Example; int cenIdx = 0; foreach (KeyValuePair <LblT, CentroidData> labeledCentroid in centroids) { double sim = dotProd[cenIdx][instIdx]; if (sim > maxSim) { maxSim = sim; assignedCentroid = labeledCentroid.Value; } if (labeledCentroid.Key.Equals(labeledExample.Label)) { actualCentroid = labeledCentroid.Value; } cenIdx++; } if (assignedCentroid != actualCentroid) { assignedCentroid.AddToDiff(-learnRate, vec); actualCentroid.AddToDiff(learnRate, vec); errCount++; } } mLogger.Info("Train", "Training set error rate: {0:0.00}%", (double)errCount / (double)dataset.Count * 100.0); // update centroids int k = 0; foreach (CentroidData centroidData in centroids.Values) { mLogger.ProgressNormal(Logger.Level.Info, /*sender=*/ this, "Train", "Centroid {0} / {1} ...", ++k, centroids.Count); centroidData.Update(mPositiveValuesOnly); centroidData.UpdateCentroidLen(); } learnRate *= mDamping; } mCentroidMtxTr = new SparseMatrix <double>(); mLabels = new ArrayList <LblT>(); int rowIdx = 0; foreach (KeyValuePair <LblT, CentroidData> labeledCentroid in centroids) { mCentroidMtxTr[rowIdx++] = labeledCentroid.Value.GetSparseVector(); mLabels.Add(labeledCentroid.Key); } mCentroidMtxTr = mCentroidMtxTr.GetTransposedCopy(); }
public ClusteringResult Cluster(IUnlabeledExampleCollection <SparseVector <double> > dataset) { Utils.ThrowException(dataset == null ? new ArgumentNullException("dataset") : null); Utils.ThrowException(dataset.Count < mK ? new ArgumentValueException("dataset") : null); ClusteringResult clustering = null; double globalBestClustQual = 0; for (int trial = 1; trial <= mTrials; trial++) { mLogger.Info("Cluster", "Clustering trial {0} of {1} ...", trial, mTrials); ArrayList <CentroidData> centroids = new ArrayList <CentroidData>(mK); ArrayList <int> bestSeeds = null; for (int i = 0; i < mK; i++) { centroids.Add(new CentroidData()); } // select seed items double minSim = double.MaxValue; ArrayList <int> tmp = new ArrayList <int>(dataset.Count); for (int i = 0; i < dataset.Count; i++) { tmp.Add(i); } for (int k = 0; k < 3; k++) { ArrayList <SparseVector <double> > seeds = new ArrayList <SparseVector <double> >(mK); tmp.Shuffle(mRnd); for (int i = 0; i < mK; i++) { seeds.Add(dataset[tmp[i]]); } // assess quality of seed items double simAvg = 0; foreach (SparseVector <double> seed1 in seeds) { foreach (SparseVector <double> seed2 in seeds) { if (seed1 != seed2) { simAvg += DotProductSimilarity.Instance.GetSimilarity(seed1, seed2); } } } simAvg /= (double)(mK * mK - mK); //Console.WriteLine(simAvg); if (simAvg < minSim) { minSim = simAvg; bestSeeds = new ArrayList <int>(mK); for (int i = 0; i < mK; i++) { bestSeeds.Add(tmp[i]); } } } for (int i = 0; i < mK; i++) { centroids[i].Items.Add(bestSeeds[i]); centroids[i].Update(dataset); centroids[i].UpdateCentroidLen(); } double[][] dotProd = new double[mK][]; SparseMatrix <double> dsMtx = ModelUtils.GetTransposedMatrix(dataset); // main loop int iter = 0; double bestClustQual = 0; double clustQual; while (true) { iter++; mLogger.Info("Cluster", "Iteration {0} ...", iter); clustQual = 0; // assign items to clusters int j = 0; foreach (CentroidData cen in centroids) { SparseVector <double> cenVec = cen.GetSparseVector(); dotProd[j] = ModelUtils.GetDotProductSimilarity(dsMtx, dataset.Count, cenVec); j++; } for (int instIdx = 0; instIdx < dataset.Count; instIdx++) { double maxSim = double.MinValue; ArrayList <int> candidates = new ArrayList <int>(); for (int cenIdx = 0; cenIdx < mK; cenIdx++) { double sim = dotProd[cenIdx][instIdx]; if (sim > maxSim) { maxSim = sim; candidates.Clear(); candidates.Add(cenIdx); } else if (sim == maxSim) { candidates.Add(cenIdx); } } if (candidates.Count > 1) { candidates.Shuffle(mRnd); } if (candidates.Count > 0) // *** is this always true? { centroids[candidates[0]].Items.Add(instIdx); clustQual += maxSim; } } clustQual /= (double)dataset.Count; mLogger.Info("Cluster", "Quality: {0:0.0000}", clustQual); // check if done if (iter > 1 && clustQual - bestClustQual <= mEps) { break; } bestClustQual = clustQual; // compute new centroids for (int i = 0; i < mK; i++) { centroids[i].Update(dataset); centroids[i].UpdateCentroidLen(); } } if (trial == 1 || clustQual > globalBestClustQual) { globalBestClustQual = clustQual; // save the result clustering = new ClusteringResult(); for (int i = 0; i < mK; i++) { clustering.AddRoot(new Cluster()); clustering.Roots.Last.Items.AddRange(centroids[i].Items); } } } return(clustering); }