public override void ProcessCollision(CollisionObject body0, CollisionObject body1, DispatcherInfo dispatchInfo, ManifoldResult resultOut)
        {
            //resultOut = new ManifoldResult();
	        if (m_manifoldPtr == null)
            {
		        return;
            }

	        CollisionObject sphereObj = m_swapped? body1 : body0;
	        CollisionObject triObj = m_swapped? body0 : body1;

	        SphereShape sphere = (SphereShape)sphereObj.GetCollisionShape();
	        TriangleShape triangle = (TriangleShape)triObj.GetCollisionShape();
        	
	        /// report a contact. internally this will be kept persistent, and contact reduction is done
	        resultOut.SetPersistentManifold(m_manifoldPtr);
	        SphereTriangleDetector detector = new SphereTriangleDetector(sphere,triangle, m_manifoldPtr.GetContactBreakingThreshold());
	        ClosestPointInput input = new ClosestPointInput();
	        input.m_maximumDistanceSquared = float.MaxValue;
	        input.m_transformA = sphereObj.GetWorldTransform();
	        input.m_transformB = triObj.GetWorldTransform();

	        bool swapResults = m_swapped;

	        detector.GetClosestPoints(input,resultOut,dispatchInfo.getDebugDraw(),swapResults);

	        if (m_ownManifold)
            {
		        resultOut.RefreshContactPoints();
            }
        }
	    public override void ProcessCollision (CollisionObject body0,CollisionObject body1,DispatcherInfo dispatchInfo,ManifoldResult resultOut)
        {
	        if (m_manifoldPtr == null)
	        {
		        //swapped?
		        m_manifoldPtr = m_dispatcher.GetNewManifold(body0,body1);
		        m_ownManifold = true;
	        }
	        resultOut.SetPersistentManifold(m_manifoldPtr);

	        //comment-out next line to test multi-contact generation
	        //resultOut.getPersistentManifold().clearManifold();


	        ConvexShape min0 = (ConvexShape)(body0.GetCollisionShape());
	        ConvexShape min1 = (ConvexShape)(body1.GetCollisionShape());

	        Vector3  normalOnB = Vector3.Zero;
	        Vector3  pointOnBWorld = Vector3.Zero;

	        {
		        ClosestPointInput input = new ClosestPointInput();

		        GjkPairDetector	gjkPairDetector = new GjkPairDetector(min0,min1,m_simplexSolver,m_pdSolver);
		        //TODO: if (dispatchInfo.m_useContinuous)
		        gjkPairDetector.SetMinkowskiA(min0);
		        gjkPairDetector.SetMinkowskiB(min1);

		        {
			        input.m_maximumDistanceSquared = min0.Margin + min1.Margin + m_manifoldPtr.GetContactBreakingThreshold();
			        input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
		        }

		        input.m_transformA = body0.GetWorldTransform();
		        input.m_transformB = body1.GetWorldTransform();

		        gjkPairDetector.GetClosestPoints(input,resultOut,dispatchInfo.getDebugDraw(),false);

                if (BulletGlobals.g_streamWriter != null)
                {
                    BulletGlobals.g_streamWriter.WriteLine("c2dc2d processCollision");
                    MathUtil.PrintMatrix(BulletGlobals.g_streamWriter, "transformA", input.m_transformA);
                    MathUtil.PrintMatrix(BulletGlobals.g_streamWriter, "transformB", input.m_transformB);
                }

                //btVector3 v0,v1;
                //btVector3 sepNormalWorldSpace;

	        }

	        if (m_ownManifold)
	        {
		        resultOut.RefreshContactPoints();
	        }

        }
	    public override void ProcessCollision (CollisionObject body0,CollisionObject body1,DispatcherInfo dispatchInfo,ManifoldResult resultOut)
        {
	        if (m_manifoldPtr == null)
            {
		        return;
            }

	        resultOut.SetPersistentManifold(m_manifoldPtr);

	        SphereShape sphere0 = (SphereShape)body0.GetCollisionShape();
	        SphereShape sphere1 = (SphereShape)body1.GetCollisionShape();

	        Vector3 diff = body0.GetWorldTransform().Translation - body1.GetWorldTransform().Translation;
	        float len = diff.Length();
	        float radius0 = sphere0.GetRadius();
	        float radius1 = sphere1.GetRadius();

        #if CLEAR_MANIFOLD
	        m_manifoldPtr.clearManifold(); //don't do this, it disables warmstarting
        #endif

	        ///iff distance positive, don't generate a new contact
	        if ( len > (radius0+radius1))
	        {
        #if !CLEAR_MANIFOLD
		        resultOut.RefreshContactPoints();
        #endif //CLEAR_MANIFOLD
		        return;
	        }
	        ///distance (negative means penetration)
	        float dist = len - (radius0+radius1);

	        Vector3 normalOnSurfaceB = new Vector3(1,0,0);
	        if (len > MathUtil.SIMD_EPSILON)
	        {
		        normalOnSurfaceB = diff / len;
	        }

	        ///point on A (worldspace)
	        ///btVector3 pos0 = col0->getWorldTransform().getOrigin() - radius0 * normalOnSurfaceB;
	        ///point on B (worldspace)
	        Vector3 pos1 = body1.GetWorldTransform().Translation + radius1* normalOnSurfaceB;

	        /// report a contact. internally this will be kept persistent, and contact reduction is done
        	
	        resultOut.AddContactPoint(ref normalOnSurfaceB,ref pos1,dist);

        #if !CLEAR_MANIFOLD
	        resultOut.RefreshContactPoints();
        #endif //CLEAR_MANIFOLD


        }
	    public override void ProcessCollision (CollisionObject body0,CollisionObject body1,DispatcherInfo dispatchInfo,ManifoldResult resultOut)
        {
            //(void)dispatchInfo;
            //(void)resultOut;
            if (m_manifoldPtr == null)
            {
                resultOut = null;
                return;
            }

	        CollisionObject sphereObj = m_isSwapped? body1 : body0;
	        CollisionObject boxObj = m_isSwapped? body0 : body1;

	        SphereShape sphere0 = (SphereShape)sphereObj.GetCollisionShape();

            //Vector3 normalOnSurfaceB;
            Vector3 pOnBox = Vector3.Zero, pOnSphere = Vector3.Zero;
            Vector3 sphereCenter = sphereObj.GetWorldTransform().Translation;
	        float radius = sphere0.GetRadius();
        	
	        float dist = GetSphereDistance(boxObj,ref pOnBox,ref pOnSphere,ref sphereCenter,radius);
            resultOut = new ManifoldResult();
	        resultOut.SetPersistentManifold(m_manifoldPtr);

	        if (dist < MathUtil.SIMD_EPSILON)
	        {
                Vector3 normalOnSurfaceB = (pOnBox - pOnSphere);
                normalOnSurfaceB.Normalize();

		        /// report a contact. internally this will be kept persistent, and contact reduction is done

		        resultOut.AddContactPoint(ref normalOnSurfaceB,ref pOnBox,dist);
	        }

	        if (m_ownManifold)
	        {
		        if (m_manifoldPtr.GetNumContacts() > 0)
		        {
			        resultOut.RefreshContactPoints();
		        }
	        }
        }
예제 #5
0
	    public override void ProcessCollision (CollisionObject body0,CollisionObject body1,DispatcherInfo dispatchInfo, ManifoldResult resultOut)
        {
            if (m_manifoldPtr == null)
            {
		        return;
            }

	        CollisionObject	col0 = body0;
	        CollisionObject	col1 = body1;
            resultOut = new ManifoldResult(body0, body1);
	        BoxShape box0 = (BoxShape)col0.GetCollisionShape();
	        BoxShape box1 = (BoxShape)col1.GetCollisionShape();

            //if (((String)col0.getUserPointer()).Contains("Box") &&
            //    ((String)col1.getUserPointer()).Contains("Box") )
            //{
            //    int ibreak = 0;
            //}
	        /// report a contact. internally this will be kept persistent, and contact reduction is done
	        resultOut.SetPersistentManifold(m_manifoldPtr);

            #if !USE_PERSISTENT_CONTACTS	
	            m_manifoldPtr.ClearManifold();
            #endif //USE_PERSISTENT_CONTACTS

	        ClosestPointInput input = new ClosestPointInput();
            input.m_maximumDistanceSquared = float.MaxValue;
	        input.m_transformA = body0.GetWorldTransform();
	        input.m_transformB = body1.GetWorldTransform();

	        BoxBoxDetector detector = new BoxBoxDetector(box0,box1);
	        detector.GetClosestPoints(input,resultOut,dispatchInfo.getDebugDraw(),false);

            #if USE_PERSISTENT_CONTACTS
            //  refreshContactPoints is only necessary when using persistent contact points. otherwise all points are newly added
            if (m_ownManifold)
            {
	            resultOut.RefreshContactPoints();
            }
            #endif //USE_PERSISTENT_CONTACTS
        }
		public override void ProcessCollision(CollisionObject body0, CollisionObject body1, DispatcherInfo dispatchInfo, ManifoldResult resultOut)
		{
			if (m_manifoldPtr == null)
			{
				return;
			}

			CollisionObject col0 = body0;
			CollisionObject col1 = body1;
			Box2dShape box0 = (Box2dShape)col0.GetCollisionShape();
			Box2dShape box1 = (Box2dShape)col1.GetCollisionShape();

			resultOut.SetPersistentManifold(m_manifoldPtr);

			B2CollidePolygons(ref resultOut, box0, col0.GetWorldTransform(), box1, col1.GetWorldTransform());

			//  refreshContactPoints is only necessary when using persistent contact points. otherwise all points are newly added
			if (m_ownManifold)
			{
				resultOut.RefreshContactPoints();
			}

		}
예제 #7
0
        public override void ProcessCollision(CollisionObject body0,CollisionObject body1,DispatcherInfo dispatchInfo,ManifoldResult resultOut)
        {
	        if (m_manifoldPtr == null)
	        {
		        //swapped?
		        m_manifoldPtr = m_dispatcher.GetNewManifold(body0,body1);
		        m_ownManifold = true;
	        }
            //resultOut = new ManifoldResult();
	        resultOut.SetPersistentManifold(m_manifoldPtr);

	        //comment-out next line to test multi-contact generation
	        //resultOut.getPersistentManifold().clearManifold();
        	

	        ConvexShape min0 = (ConvexShape)(body0.GetCollisionShape());
	        ConvexShape min1 = (ConvexShape)(body1.GetCollisionShape());
        	Vector3  normalOnB = Vector3.Up;
            Vector3  pointOnBWorld = Vector3.Zero;
#if !BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
            if ((min0.ShapeType == BroadphaseNativeTypes.CAPSULE_SHAPE_PROXYTYPE) && (min1.ShapeType == BroadphaseNativeTypes.CAPSULE_SHAPE_PROXYTYPE))
	        {
		        CapsuleShape capsuleA = (CapsuleShape) min0;
		        CapsuleShape capsuleB = (CapsuleShape) min1;
		        Vector3 localScalingA = capsuleA.GetLocalScaling();
		        Vector3 localScalingB = capsuleB.GetLocalScaling();
        		
		        float threshold = m_manifoldPtr.GetContactBreakingThreshold();

		        float dist = CapsuleCapsuleDistance(ref normalOnB,ref pointOnBWorld,capsuleA.getHalfHeight(),capsuleA.getRadius(),
			        capsuleB.getHalfHeight(),capsuleB.getRadius(),capsuleA.GetUpAxis(),capsuleB.GetUpAxis(),
			        body0.GetWorldTransform(),body1.GetWorldTransform(),threshold);

		        if (dist<threshold)
		        {
                    Debug.Assert(normalOnB.LengthSquared() >= (MathUtil.SIMD_EPSILON * MathUtil.SIMD_EPSILON));
			        resultOut.AddContactPoint(ref normalOnB,ref pointOnBWorld,dist);	
		        }
		        resultOut.RefreshContactPoints();
		        return;
	        }
#endif //BT_DISABLE_CAPSULE_CAPSULE_COLLIDER



        #if USE_SEPDISTANCE_UTIL2
        	if (dispatchInfo.m_useConvexConservativeDistanceUtil)
            {
                m_sepDistance.updateSeparatingDistance(body0.getWorldTransform(),body1.getWorldTransform());
            }

	        if (!dispatchInfo.m_useConvexConservativeDistanceUtil || m_sepDistance.getConservativeSeparatingDistance()<=0.f)
#endif //USE_SEPDISTANCE_UTIL2

    {

        	
	        ClosestPointInput input = new ClosestPointInput();

	        GjkPairDetector	gjkPairDetector = new GjkPairDetector(min0,min1,m_simplexSolver,m_pdSolver);
	        //TODO: if (dispatchInfo.m_useContinuous)
	        gjkPairDetector.SetMinkowskiA(min0);
	        gjkPairDetector.SetMinkowskiB(min1);

        #if USE_SEPDISTANCE_UTIL2
	        if (dispatchInfo.m_useConvexConservativeDistanceUtil)
	        {
		        input.m_maximumDistanceSquared = float.MaxValue;
	        } 
            else
        #endif //USE_SEPDISTANCE_UTIL2
	        {
		        input.m_maximumDistanceSquared = min0.Margin + min1.Margin + m_manifoldPtr.GetContactBreakingThreshold();
		        input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
	        }

            //input.m_stackAlloc = dispatchInfo.m_stackAllocator;
	        input.m_transformA = body0.GetWorldTransform();
	        input.m_transformB = body1.GetWorldTransform();

	        gjkPairDetector.GetClosestPoints(input,resultOut,dispatchInfo.getDebugDraw(),false);
#if USE_SEPDISTANCE_UTIL2
	float sepDist = 0.f;
	if (dispatchInfo.m_useConvexConservativeDistanceUtil)
	{
		sepDist = gjkPairDetector.getCachedSeparatingDistance();
		if (sepDist>MathUtil.SIMD_EPSILON)
		{
			sepDist += dispatchInfo.m_convexConservativeDistanceThreshold;
			//now perturbe directions to get multiple contact points
		}
	}
#endif //USE_SEPDISTANCE_UTIL2

	        //now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects
        	
	        //perform perturbation when more then 'm_minimumPointsPerturbationThreshold' points
	        if (m_numPerturbationIterations > 0 &&  resultOut.GetPersistentManifold().GetNumContacts() < m_minimumPointsPerturbationThreshold)
	        {
                Vector3 v0 = Vector3.Zero, v1 = Vector3.Zero;

                Vector3 sepNormalWorldSpace = gjkPairDetector.GetCachedSeparatingAxis();
                sepNormalWorldSpace.Normalize();
                TransformUtil.PlaneSpace1(ref sepNormalWorldSpace, ref v0, ref v1);

		        bool perturbeA = true;
		        const float angleLimit = 0.125f * MathUtil.SIMD_PI;
		        float perturbeAngle;
		        float radiusA = min0.GetAngularMotionDisc();
		        float radiusB = min1.GetAngularMotionDisc();
		        if (radiusA < radiusB)
		        {
			        perturbeAngle = BulletGlobals.gContactBreakingThreshold /radiusA;
			        perturbeA = true;
		        } 
                else
		        {
                    perturbeAngle = BulletGlobals.gContactBreakingThreshold / radiusB;
			        perturbeA = false;
		        }
                if (perturbeAngle > angleLimit)
                {
                    perturbeAngle = angleLimit;
                }

		        Matrix unPerturbedTransform = Matrix.Identity;
		        if (perturbeA)
		        {
			        unPerturbedTransform = input.m_transformA;
		        } 
                else
		        {
			        unPerturbedTransform = input.m_transformB;
		        }
        		
		        for (int i=0;i<m_numPerturbationIterations;i++)
		        {
                    if (v0.LengthSquared() > MathUtil.SIMD_EPSILON)
                    {

                        Quaternion perturbeRot = Quaternion.CreateFromAxisAngle(v0, perturbeAngle);
                        float iterationAngle = i * (MathUtil.SIMD_2_PI / (float)m_numPerturbationIterations);
                        Quaternion rotq = Quaternion.CreateFromAxisAngle(sepNormalWorldSpace, iterationAngle);

                        if (perturbeA)
                        {
                            //input.m_transformA.setBasis(  btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body0.getWorldTransform().getBasis());
                            Quaternion temp = MathUtil.QuaternionMultiply(MathUtil.QuaternionInverse(ref rotq),MathUtil.QuaternionMultiply(perturbeRot,rotq));
                            input.m_transformA = MathUtil.BulletMatrixMultiplyBasis(Matrix.CreateFromQuaternion(temp),body0.GetWorldTransform());
                            input.m_transformB = body1.GetWorldTransform();
#if DEBUG_CONTACTS
				        dispatchInfo.m_debugDraw.DrawTransform(ref input.m_transformA,10.0f);
#endif //DEBUG_CONTACTS
                        }
                        else
                        {
                            input.m_transformA = body0.GetWorldTransform();
                            //input.m_transformB.setBasis( btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body1.getWorldTransform().getBasis());
                            Quaternion temp = MathUtil.QuaternionMultiply(MathUtil.QuaternionInverse(ref rotq),MathUtil.QuaternionMultiply(perturbeRot,rotq));
                            input.m_transformB = MathUtil.BulletMatrixMultiplyBasis(Matrix.CreateFromQuaternion(temp),body1.GetWorldTransform());
#if DEBUG_CONTACTS
				        dispatchInfo.m_debugDraw.DrawTransform(ref input.m_transformB,10.0f);
#endif
                        }

                        PerturbedContactResult perturbedResultOut = new PerturbedContactResult(resultOut, ref input.m_transformA, ref input.m_transformB, ref unPerturbedTransform, perturbeA, dispatchInfo.getDebugDraw());
                        gjkPairDetector.GetClosestPoints(input, perturbedResultOut, dispatchInfo.getDebugDraw(), false);
                    }
        			
        			
		        }
	        }

        	

        #if USE_SEPDISTANCE_UTIL2
	        if (dispatchInfo.m_useConvexConservativeDistanceUtil && (sepDist > MathUtil.SIMD_EPSILON))
	        {
		        m_sepDistance.initSeparatingDistance(gjkPairDetector.getCachedSeparatingAxis(),sepDist,body0.getWorldTransform(),body1.getWorldTransform());
	        }
        #endif //USE_SEPDISTANCE_UTIL2


	        }

	        if (m_ownManifold)
	        {
		        resultOut.RefreshContactPoints();
	        }
        }
        public override void ProcessCollision(CollisionObject body0, CollisionObject body1, DispatcherInfo dispatchInfo, ManifoldResult resultOut)
        {
            //resultOut = null;
	        CollisionObject colObj = m_isSwapped? body1 : body0;
	        CollisionObject otherObj = m_isSwapped? body0 : body1;

			System.Diagnostics.Debug.Assert(colObj.GetCollisionShape().IsCompound());
	        CompoundShape compoundShape = (CompoundShape)(colObj.GetCollisionShape());

	        ///btCompoundShape might have changed:
	        ////make sure the internal child collision algorithm caches are still valid
	        if (compoundShape.GetUpdateRevision() != m_compoundShapeRevision)
	        {
		        ///clear and update all
		        RemoveChildAlgorithms();
		        PreallocateChildAlgorithms(body0,body1);
	        }


	        Dbvt tree = compoundShape.GetDynamicAabbTree();
	        //use a dynamic aabb tree to cull potential child-overlaps
	        CompoundLeafCallback  callback = new CompoundLeafCallback(colObj,otherObj,m_dispatcher,dispatchInfo,resultOut,m_childCollisionAlgorithms,m_sharedManifold);

	        ///we need to refresh all contact manifolds
	        ///note that we should actually recursively traverse all children, btCompoundShape can nested more then 1 level deep
	        ///so we should add a 'refreshManifolds' in the btCollisionAlgorithm
	        {
                IList<PersistentManifold> manifoldArray = new List<PersistentManifold>();
		        for (int i=0;i<m_childCollisionAlgorithms.Count;i++)
		        {
			        if (m_childCollisionAlgorithms[i] != null)
			        {
				        m_childCollisionAlgorithms[i].GetAllContactManifolds(manifoldArray);
				        for (int m=0;m<manifoldArray.Count;m++)
				        {
					        if (manifoldArray[m].GetNumContacts() > 0)
					        {
						        resultOut.SetPersistentManifold(manifoldArray[m]);
						        resultOut.RefreshContactPoints();
						        resultOut.SetPersistentManifold(null);//??necessary?
					        }
				        }
				        manifoldArray.Clear();
			        }
		        }
	        }

	        if (tree != null)
	        {

		        Vector3 localAabbMin = new Vector3();
                Vector3 localAabbMax = new Vector3();
		        Matrix otherInCompoundSpace = Matrix.Identity;
				//otherInCompoundSpace = MathUtil.BulletMatrixMultiply(colObj.GetWorldTransform(),otherObj.GetWorldTransform());
				otherInCompoundSpace = MathUtil.InverseTimes(colObj.GetWorldTransform(), otherObj.GetWorldTransform());

		        otherObj.GetCollisionShape().GetAabb(ref otherInCompoundSpace,ref localAabbMin,ref localAabbMax);

                DbvtAabbMm bounds = DbvtAabbMm.FromMM(ref localAabbMin, ref localAabbMax);
		        //process all children, that overlap with  the given AABB bounds
		        Dbvt.CollideTV(tree.m_root,ref bounds,callback);

	        } 
            else
	        {
		        //iterate over all children, perform an AABB check inside ProcessChildShape
		        int numChildren = m_childCollisionAlgorithms.Count;
		        for (int i=0;i<numChildren;i++)
		        {
			        callback.ProcessChildShape(compoundShape.GetChildShape(i),i);
		        }
	        }

	        {
		        //iterate over all children, perform an AABB check inside ProcessChildShape
		        int numChildren = m_childCollisionAlgorithms.Count;

		        IList<PersistentManifold> manifoldArray = new List<PersistentManifold>();

		        for (int i=0;i<numChildren;i++)
		        {
			        if (m_childCollisionAlgorithms[i] != null)
			        {
				        CollisionShape childShape = compoundShape.GetChildShape(i);
			            //if not longer overlapping, remove the algorithm
				        Matrix orgTrans = colObj.GetWorldTransform();
				        Matrix orgInterpolationTrans = colObj.GetInterpolationWorldTransform();
				        Matrix childTrans = compoundShape.GetChildTransform(i);

						Matrix newChildWorldTrans = MathUtil.BulletMatrixMultiply(ref orgTrans, ref childTrans);

				        //perform an AABB check first
				        Vector3 aabbMin0 = new Vector3();
                        Vector3 aabbMax0 = new Vector3();
                        Vector3 aabbMin1 = new Vector3();
                        Vector3 aabbMax1 = new Vector3();
                            
				        childShape.GetAabb(ref newChildWorldTrans,ref aabbMin0,ref aabbMax0);
				        otherObj.GetCollisionShape().GetAabb(otherObj.GetWorldTransform(),ref aabbMin1,ref aabbMax1);

				        if (!AabbUtil2.TestAabbAgainstAabb2(ref aabbMin0,ref aabbMax0,ref aabbMin1,ref aabbMax1))
				        {
			                m_dispatcher.FreeCollisionAlgorithm(m_childCollisionAlgorithms[i]);
					        m_childCollisionAlgorithms[i] = null;
				        }
			        }
		        }
	        }
        }
	    public virtual void CollideSingleContact(ref Quaternion perturbeRot, CollisionObject body0,CollisionObject body1,DispatcherInfo dispatchInfo,ManifoldResult resultOut)
        {
            CollisionObject convexObj = m_isSwapped? body1 : body0;
	        CollisionObject planeObj = m_isSwapped? body0: body1;

	        ConvexShape convexShape = (ConvexShape) convexObj.GetCollisionShape();
	        StaticPlaneShape planeShape = (StaticPlaneShape) planeObj.GetCollisionShape();

            bool hasCollision = false;
	        Vector3 planeNormal = planeShape.GetPlaneNormal();
	        float planeConstant = planeShape.GetPlaneConstant();
        	
	        Matrix convexWorldTransform = convexObj.GetWorldTransform();
	        Matrix convexInPlaneTrans = Matrix.Identity;

			convexInPlaneTrans = MathUtil.BulletMatrixMultiply(Matrix.Invert(planeObj.GetWorldTransform()), convexWorldTransform);

	        //now perturbe the convex-world transform
            
            // MAN - CHECKTHIS
            Matrix rotMatrix = Matrix.CreateFromQuaternion(perturbeRot);
	        convexWorldTransform = MathUtil.BulletMatrixMultiplyBasis(convexWorldTransform,rotMatrix);

            Matrix planeInConvex = Matrix.Identity;
	        planeInConvex= MathUtil.BulletMatrixMultiply(Matrix.Invert(convexWorldTransform),planeObj.GetWorldTransform());
        	
	        Vector3 tmp = Vector3.TransformNormal(-planeNormal,planeInConvex);
            Vector3 vtx = convexShape.LocalGetSupportingVertex(ref tmp);

	        Vector3 vtxInPlane = Vector3.Transform(vtx,convexInPlaneTrans);
	        float distance = (Vector3.Dot(planeNormal,vtxInPlane) - planeConstant);

	        Vector3 vtxInPlaneProjected = vtxInPlane - (distance*planeNormal);
	        Vector3 vtxInPlaneWorld = Vector3.Transform(vtxInPlaneProjected,planeObj.GetWorldTransform());

	        hasCollision = distance < m_manifoldPtr.GetContactBreakingThreshold();

	        resultOut.SetPersistentManifold(m_manifoldPtr);
	        if (hasCollision)
	        {
		        /// report a contact. internally this will be kept persistent, and contact reduction is done
		        Vector3 normalOnSurfaceB = Vector3.TransformNormal(planeNormal,planeObj.GetWorldTransform());
		        Vector3 pOnB = vtxInPlaneWorld;
		        resultOut.AddContactPoint(ref normalOnSurfaceB,ref pOnB,distance);
	        }
        }
        //public override void processCollision (CollisionObject body0,CollisionObject body1,DispatcherInfo dispatchInfo,ManifoldResult resultOut)
        //{
        //    CollisionObject convexBody = m_isSwapped ? body1 : body0;
        //    CollisionObject triBody = m_isSwapped ? body0 : body1;

        //    if (triBody.getCollisionShape().isConcave())
        //    {
        //        CollisionObject triOb = triBody;
        //        ConcaveShape concaveShape = (ConcaveShape)(triOb.getCollisionShape());

        //        if (convexBody.getCollisionShape().isConvex())
        //        {
        //            float collisionMarginTriangle = concaveShape.getMargin();

        //            resultOut.setPersistentManifold(m_convexTriangleCallback.m_manifoldPtr);
        //            m_convexTriangleCallback.setTimeStepAndCounters(collisionMarginTriangle, dispatchInfo, resultOut);

        //            //Disable persistency. previously, some older algorithm calculated all contacts in one go, so you can clear it here.
        //            //m_dispatcher.clearManifold(m_convexTriangleCallback.m_manifoldPtr);

        //            m_convexTriangleCallback.m_manifoldPtr.setBodies(convexBody, triBody);

        //            Vector3 min = m_convexTriangleCallback.getAabbMin();
        //            Vector3 max = m_convexTriangleCallback.getAabbMax();

        //            concaveShape.processAllTriangles(m_convexTriangleCallback, ref min,ref max );

        //            resultOut.refreshContactPoints();

        //        }
        //    }
        //}


        //public override float calculateTimeOfImpact(CollisionObject body0, CollisionObject body1, DispatcherInfo dispatchInfo, ManifoldResult resultOut)
        //{
        //    CollisionObject convexbody = m_isSwapped ? body1 : body0;
        //    CollisionObject triBody = m_isSwapped ? body0 : body1;

        //    //quick approximation using raycast, todo: hook up to the continuous collision detection (one of the btConvexCast)

        //    //only perform CCD above a certain threshold, this prevents blocking on the long run
        //    //because object in a blocked ccd state (hitfraction<1) get their linear velocity halved each frame...
        //    float squareMot0 = (convexbody.getInterpolationWorldTransform().Translation - convexbody.getWorldTransform().Translation).LengthSquared();
        //    if (squareMot0 < convexbody.getCcdSquareMotionThreshold())
        //    {
        //        return 1f;
        //    }

        //    //const Vector3& from = convexbody.m_worldTransform.Translation;
        //    //Vector3 to = convexbody.m_interpolationWorldTransform.Translation;
        //    //todo: only do if the motion exceeds the 'radius'

        //    //Matrix triInv = Matrix.Invert(triBody.getWorldTransform());
        //    //Matrix convexFromLocal = MathUtil.bulletMatrixMultiply(triInv , convexbody.getWorldTransform());
        //    //Matrix convexToLocal = MathUtil.bulletMatrixMultiply(triInv , convexbody.getInterpolationWorldTransform());

        //    Matrix triInv = Matrix.Invert(triBody.getWorldTransform());
        //    Matrix convexFromLocal = MathUtil.inverseTimes(triBody.getWorldTransform(), convexbody.getWorldTransform());
        //    Matrix convexToLocal = MathUtil.inverseTimes(triBody.getWorldTransform(), convexbody.getInterpolationWorldTransform());

        //    if (triBody.getCollisionShape().isConcave())
        //    {
        //        Vector3 rayAabbMin = convexFromLocal.Translation;
        //        MathUtil.vectorMin(convexToLocal.Translation, ref rayAabbMin);
        //        Vector3 rayAabbMax = convexFromLocal.Translation;
        //        MathUtil.vectorMax(convexToLocal.Translation,ref rayAabbMax);
        //        float ccdRadius0 = convexbody.getCcdSweptSphereRadius();
        //        rayAabbMin -= new Vector3(ccdRadius0,ccdRadius0,ccdRadius0);
        //        rayAabbMax += new Vector3(ccdRadius0,ccdRadius0,ccdRadius0);

        //        float curHitFraction = 1.0f; //is this available?
        //        LocalTriangleSphereCastCallback raycastCallback = new LocalTriangleSphereCastCallback(ref convexFromLocal, ref convexToLocal,
        //            convexbody.getCcdSweptSphereRadius(),curHitFraction);

        //        raycastCallback.m_hitFraction = convexbody.getHitFraction();

        //        CollisionObject concavebody = triBody;

        //        ConcaveShape triangleMesh = (ConcaveShape) concavebody.getCollisionShape();
        		
        //        if (triangleMesh != null)
        //        {
        //            triangleMesh.processAllTriangles(raycastCallback,ref rayAabbMin,ref rayAabbMax);
        //        }

        //        if (raycastCallback.m_hitFraction < convexbody.getHitFraction())
        //        {
        //            convexbody.setHitFraction( raycastCallback.m_hitFraction);
        //            float result = raycastCallback.m_hitFraction;
        //            raycastCallback.cleanup();
        //            return result;
        //        }

        //        raycastCallback.cleanup();
        //    }
        //    return 1f;
        //}

        public override void ProcessCollision(CollisionObject bodyA, CollisionObject bodyB, DispatcherInfo dispatchInfo, ManifoldResult resultOut)
        {


            //fixme

            CollisionObject convexBody = m_isSwapped ? bodyB : bodyA;
            CollisionObject triBody = m_isSwapped ? bodyA : bodyB;

            if (triBody.GetCollisionShape().IsConcave())
            {
                CollisionObject triOb = triBody;
                ConcaveShape concaveShape = triOb.GetCollisionShape() as ConcaveShape;

                if (convexBody.GetCollisionShape().IsConvex())
                {
                    float collisionMarginTriangle = concaveShape.Margin;

                    resultOut.SetPersistentManifold(m_convexTriangleCallback.m_manifoldPtr);
                    m_convexTriangleCallback.SetTimeStepAndCounters(collisionMarginTriangle, dispatchInfo, resultOut);

                    //Disable persistency. previously, some older algorithm calculated all contacts in one go, so you can clear it here.
                    //m_dispatcher->clearManifold(m_btConvexTriangleCallback.m_manifoldPtr);

                    m_convexTriangleCallback.m_manifoldPtr.SetBodies(convexBody, triBody);
                    Vector3 min = m_convexTriangleCallback.GetAabbMin();
                    Vector3 max = m_convexTriangleCallback.GetAabbMax();

                    concaveShape.ProcessAllTriangles(m_convexTriangleCallback, ref min,ref max);
                    resultOut.RefreshContactPoints();
                }
            }
        }