예제 #1
0
        /// <summary>
        /// Calculates OA grade prediction.
        /// </summary>
        /// <param name="mod">Loaded model.</param>
        /// <param name="features">LBP features.</param>
        /// <param name="volume">Data array.</param>
        /// <returns>Returns string containing the OA grade</returns>
        public static string Predict(Model mod, ref int[,] features, ref Rendering.renderPipeLine volume)
        {
            // Default variables
            int threshold = 50;

            int[] size = { 400, 30 };
            //int threshold = 5;
            //int[] size = { 10, 3 };

            // Load default model
            string state = LoadModel(ref mod);

            // Surface extraction
            Processing.SurfaceExtraction(ref volume, threshold, size, out int[,] surfacecoordinates, out byte[,,] surface);

            // Mean and std images
            Processing.MeanAndStd(surface, out double[,] meanImage, out double[,] stdImage);

            //
            // LBP features
            //

            LBPLibrary.Functions.Save(@"C:\Users\sarytky\Desktop\trials\mean.png", meanImage, true);
            LBPLibrary.Functions.Save(@"C:\Users\sarytky\Desktop\trials\std.png", stdImage, true);
            features = LBP(meanImage.Add(stdImage));

            // PCA
            double[,] dataAdjust = Processing.SubtractMean(features.ToDouble());
            double[,] PCA        = dataAdjust.Dot(mod.eigenVectors.ToDouble());

            // Regression
            double[] grade = PCA.Dot(mod.weights).Add(1.5);

            //double sum = CompareGrades(grade);

            return("OA grade: " + grade[0].ToString("####.##", CultureInfo.InvariantCulture));
            //return "Sum of differences between pretrained model and actual grade: " + sum.ToString("###.###", CultureInfo.InvariantCulture);
        }
예제 #2
0
        /// <summary>
        /// Scans the input mask slice by slice and selects the largest binary component of each slice.
        /// Return cleaned mask as vtkImageData
        /// </summary>
        /// <param name="input"></param>
        /// <param name="extent"></param>
        /// <param name="threshold"></param>
        /// <param name="axes"></param>
        /// <returns></returns>
        public static vtkImageData FalsePositiveSuppresion(vtkImageData input, int[] extent, double threshold, int axis, double scale = 1.0)
        {
            //Slice extractor
            vtkExtractVOI slicer = vtkExtractVOI.New();
            //Permuter
            vtkImagePermute permuter = vtkImagePermute.New();
            //List of outputs
            List <byte[, , ]> outputs = new List <byte[, , ]>();
            //List of output orientations
            List <int[]> orientations = new List <int[]>();

            //vtkImageData size
            int[] full_extent = input.GetExtent();

            //Set range for slices
            int start = 0, stop = 0;

            int[] size      = new int[2];
            int[] outextent = new int[4];
            if (axis == 0)
            {
                start     = extent[0];
                stop      = extent[1];
                size      = new int[] { extent[3] - extent[2] + 1, extent[5] - extent[4] + 1 };
                outextent = new int[] { extent[2], extent[3] + 1, extent[4], extent[5] + 1 };
            }
            if (axis == 1)
            {
                start     = extent[2];
                stop      = extent[3];
                size      = new int[] { extent[1] - extent[0] + 1, extent[5] - extent[4] + 1 };
                outextent = new int[] { extent[0], extent[1] + 1, extent[4], extent[5] + 1 };
            }
            if (axis == 2)
            {
                start     = extent[4];
                stop      = extent[5];
                size      = new int[] { extent[1] - extent[0] + 1, extent[3] - extent[2] + 1 };
                outextent = new int[] { extent[0], extent[1] + 1, extent[2], extent[3] + 1 };
            }

            //Temporary array for output
            byte[,,] output = new byte[full_extent[1] + 1, full_extent[3] + 1, full_extent[5] + 1];
            int[] outsize = new int[] { size[0], size[1], stop - start + 1 };
            //Loop over current axis
            for (int k = start; k < stop; k++)
            {
                byte[] bytedata = new byte[size[0] * size[1]];
                //Select slice
                if (axis == 0)
                {
                    slicer.Dispose();
                    slicer = vtkExtractVOI.New();
                    slicer.SetInput(input);
                    slicer.SetVOI(k, k, extent[2], extent[3], extent[4], extent[5]);
                    slicer.Update();
                    permuter.Dispose();
                    permuter = vtkImagePermute.New();
                    permuter.SetInput(slicer.GetOutput());
                    permuter.SetFilteredAxes(1, 2, 0);
                    permuter.Update();
                }
                if (axis == 1)
                {
                    slicer.Dispose();
                    slicer = vtkExtractVOI.New();
                    slicer.SetInput(input);
                    slicer.SetVOI(extent[0], extent[1], k, k, extent[4], extent[5]);
                    slicer.Update();
                    permuter.Dispose();
                    permuter = vtkImagePermute.New();
                    permuter.SetInput(slicer.GetOutput());
                    permuter.SetFilteredAxes(0, 2, 1);
                    permuter.Update();
                }
                if (axis == 2)
                {
                    slicer.Dispose();
                    slicer = vtkExtractVOI.New();
                    slicer.SetInput(input);
                    slicer.SetVOI(extent[0], extent[1], extent[2], extent[3], k, k);
                    slicer.Update();
                    permuter.Dispose();
                    permuter = vtkImagePermute.New();
                    permuter.SetInput(slicer.GetOutput());
                    permuter.SetFilteredAxes(0, 1, 2);
                    permuter.Update();
                }
                //Convert data to byte
                bytedata = DataTypes.vtkToByte(permuter.GetOutput());
                slicer.Dispose();
                permuter.Dispose();
                //convert data to Mat
                Mat image = new Mat(size[1], size[0], MatType.CV_8UC1, bytedata);
                //Get largest binary object
                Mat bw = Processing.LargestBWObject(image, 0.7 * 255.0);
                //Set slice to byte array
                if (bw.Sum().Val0 > 0)
                {
                    output = DataTypes.setByteSlice(output, bw, outextent, axis, k);
                }
            }

            return(DataTypes.byteToVTK(output));
        }