예제 #1
0
    public Replacer() {
      Parameters.Add(new ValueLookupParameter<ISelector>("ReplacedSelector", "The selection operator to select those scopes that are to be replaced. If no selection operator is defined, random selection will be applied."));
      Parameters.Add(new ValueLookupParameter<ISelector>("SelectedSelector", "The selection operator to select those scopes that are replacing the others. If no selection operator is defined, random selection will be applied."));

      SubScopesProcessor ssp = new SubScopesProcessor();

      Placeholder replacedSelector = new Placeholder();
      replacedSelector.OperatorParameter.ActualName = ReplacedSelectorParameter.Name;

      LeftReducer leftReducer = new LeftReducer();

      Placeholder selectedSelector = new Placeholder();
      selectedSelector.OperatorParameter.ActualName = SelectedSelectorParameter.Name;

      RightReducer rightReducer = new RightReducer();

      MergingReducer merger = new MergingReducer();

      OperatorGraph.InitialOperator = ssp;
      ssp.Operators.Add(replacedSelector);
      ssp.Operators.Add(selectedSelector);
      ssp.Successor = merger;
      replacedSelector.Successor = leftReducer;
      leftReducer.Successor = null;
      selectedSelector.Successor = rightReducer;
      rightReducer.Successor = null;
      merger.Successor = null;
    }
예제 #2
0
        public Replacer()
        {
            Parameters.Add(new ValueLookupParameter <ISelector>("ReplacedSelector", "The selection operator to select those scopes that are to be replaced. If no selection operator is defined, random selection will be applied."));
            Parameters.Add(new ValueLookupParameter <ISelector>("SelectedSelector", "The selection operator to select those scopes that are replacing the others. If no selection operator is defined, random selection will be applied."));

            SubScopesProcessor ssp = new SubScopesProcessor();

            Placeholder replacedSelector = new Placeholder();

            replacedSelector.OperatorParameter.ActualName = ReplacedSelectorParameter.Name;

            LeftReducer leftReducer = new LeftReducer();

            Placeholder selectedSelector = new Placeholder();

            selectedSelector.OperatorParameter.ActualName = SelectedSelectorParameter.Name;

            RightReducer rightReducer = new RightReducer();

            MergingReducer merger = new MergingReducer();

            OperatorGraph.InitialOperator = ssp;
            ssp.Operators.Add(replacedSelector);
            ssp.Operators.Add(selectedSelector);
            ssp.Successor = merger;
            replacedSelector.Successor = leftReducer;
            leftReducer.Successor      = null;
            selectedSelector.Successor = rightReducer;
            rightReducer.Successor     = null;
            merger.Successor           = null;
        }
예제 #3
0
    private void Initialize() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<BoolArray>("Maximization", "True if an objective should be maximized, or false if it should be minimized."));
      Parameters.Add(new ScopeTreeLookupParameter<DoubleArray>("Qualities", "The vector of quality values."));
      Parameters.Add(new ValueLookupParameter<IntValue>("PopulationSize", "The population size."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
      Parameters.Add(new ValueLookupParameter<PercentValue>("CrossoverProbability", "The probability that the crossover operator is applied on a solution."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
      Parameters.Add(new ValueLookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumGenerations", "The maximum number of generations which should be processed."));
      Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to analyze each generation."));
      Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("DominateOnEqualQualities", "Flag which determines wether solutions with equal quality values should be treated as dominated."));
      #endregion

      #region Create operators
      VariableCreator variableCreator = new VariableCreator();
      ResultsCollector resultsCollector1 = new ResultsCollector();
      Placeholder analyzer1 = new Placeholder();
      Placeholder selector = new Placeholder();
      SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
      ChildrenCreator childrenCreator = new ChildrenCreator();
      UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
      StochasticBranch crossoverStochasticBranch = new StochasticBranch();
      Placeholder crossover = new Placeholder();
      ParentCopyCrossover noCrossover = new ParentCopyCrossover();
      StochasticBranch mutationStochasticBranch = new StochasticBranch();
      Placeholder mutator = new Placeholder();
      SubScopesRemover subScopesRemover = new SubScopesRemover();
      UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
      Placeholder evaluator = new Placeholder();
      SubScopesCounter subScopesCounter = new SubScopesCounter();
      MergingReducer mergingReducer = new MergingReducer();
      RankAndCrowdingSorter rankAndCrowdingSorter = new RankAndCrowdingSorter();
      LeftSelector leftSelector = new LeftSelector();
      RightReducer rightReducer = new RightReducer();
      IntCounter intCounter = new IntCounter();
      Comparator comparator = new Comparator();
      Placeholder analyzer2 = new Placeholder();
      ConditionalBranch conditionalBranch = new ConditionalBranch();

      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0)));

      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
      resultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name;

      analyzer1.Name = "Analyzer";
      analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name;

      selector.Name = "Selector";
      selector.OperatorParameter.ActualName = SelectorParameter.Name;

      childrenCreator.ParentsPerChild = new IntValue(2);

      crossoverStochasticBranch.ProbabilityParameter.ActualName = CrossoverProbabilityParameter.Name;
      crossoverStochasticBranch.RandomParameter.ActualName = RandomParameter.Name;

      crossover.Name = "Crossover";
      crossover.OperatorParameter.ActualName = CrossoverParameter.Name;

      noCrossover.Name = "Clone parent";
      noCrossover.RandomParameter.ActualName = RandomParameter.Name;

      mutationStochasticBranch.ProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
      mutationStochasticBranch.RandomParameter.ActualName = RandomParameter.Name;

      mutator.Name = "Mutator";
      mutator.OperatorParameter.ActualName = MutatorParameter.Name;

      subScopesRemover.RemoveAllSubScopes = true;

      uniformSubScopesProcessor2.Parallel.Value = true;

      evaluator.Name = "Evaluator";
      evaluator.OperatorParameter.ActualName = EvaluatorParameter.Name;

      subScopesCounter.Name = "Increment EvaluatedSolutions";
      subScopesCounter.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;

      rankAndCrowdingSorter.DominateOnEqualQualitiesParameter.ActualName = DominateOnEqualQualitiesParameter.Name;
      rankAndCrowdingSorter.CrowdingDistanceParameter.ActualName = "CrowdingDistance";
      rankAndCrowdingSorter.RankParameter.ActualName = "Rank";

      leftSelector.CopySelected = new BoolValue(false);
      leftSelector.NumberOfSelectedSubScopesParameter.ActualName = PopulationSizeParameter.Name;

      intCounter.Increment = new IntValue(1);
      intCounter.ValueParameter.ActualName = "Generations";

      comparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      comparator.LeftSideParameter.ActualName = "Generations";
      comparator.ResultParameter.ActualName = "Terminate";
      comparator.RightSideParameter.ActualName = MaximumGenerationsParameter.Name;

      analyzer2.Name = "Analyzer";
      analyzer2.OperatorParameter.ActualName = "Analyzer";

      conditionalBranch.ConditionParameter.ActualName = "Terminate";
      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = variableCreator;
      variableCreator.Successor = resultsCollector1;
      resultsCollector1.Successor = analyzer1;
      analyzer1.Successor = selector;
      selector.Successor = subScopesProcessor1;
      subScopesProcessor1.Operators.Add(new EmptyOperator());
      subScopesProcessor1.Operators.Add(childrenCreator);
      subScopesProcessor1.Successor = mergingReducer;
      childrenCreator.Successor = uniformSubScopesProcessor1;
      uniformSubScopesProcessor1.Operator = crossoverStochasticBranch;
      uniformSubScopesProcessor1.Successor = uniformSubScopesProcessor2;
      crossoverStochasticBranch.FirstBranch = crossover;
      crossoverStochasticBranch.SecondBranch = noCrossover;
      crossoverStochasticBranch.Successor = mutationStochasticBranch;
      crossover.Successor = null;
      noCrossover.Successor = null;
      mutationStochasticBranch.FirstBranch = mutator;
      mutationStochasticBranch.SecondBranch = null;
      mutationStochasticBranch.Successor = subScopesRemover;
      mutator.Successor = null;
      subScopesRemover.Successor = null;
      uniformSubScopesProcessor2.Operator = evaluator;
      uniformSubScopesProcessor2.Successor = subScopesCounter;
      evaluator.Successor = null;
      subScopesCounter.Successor = null;
      mergingReducer.Successor = rankAndCrowdingSorter;
      rankAndCrowdingSorter.Successor = leftSelector;
      leftSelector.Successor = rightReducer;
      rightReducer.Successor = intCounter;
      intCounter.Successor = comparator;
      comparator.Successor = analyzer2;
      analyzer2.Successor = conditionalBranch;
      conditionalBranch.FalseBranch = selector;
      conditionalBranch.TrueBranch = null;
      conditionalBranch.Successor = null;
      #endregion
    }
    private CombinedOperator CreateEldersEmigrator() {
      var eldersEmigrator = new CombinedOperator() { Name = "Emigrate Elders" };
      var selectorProsessor = new UniformSubScopesProcessor();
      var eldersSelector = new EldersSelector();
      var shiftToRightMigrator = new UnidirectionalRingMigrator() { Name = "Shift elders to next layer" };
      var mergingProsessor = new UniformSubScopesProcessor();
      var mergingReducer = new MergingReducer();
      var subScopesCounter = new SubScopesCounter();
      var reduceToPopulationSizeBranch = new ConditionalBranch() { Name = "ReduceToPopulationSize?" };
      var countCalculator = new ExpressionCalculator() { Name = "CurrentPopulationSize = Min(CurrentPopulationSize, PopulationSize)" };
      var bestSelector = new BestSelector();
      var rightReducer = new RightReducer();

      eldersEmigrator.OperatorGraph.InitialOperator = selectorProsessor;

      selectorProsessor.Operator = eldersSelector;
      selectorProsessor.Successor = shiftToRightMigrator;

      eldersSelector.AgeParameter.ActualName = AgeParameter.Name;
      eldersSelector.AgeLimitsParameter.ActualName = AgeLimitsParameter.Name;
      eldersSelector.NumberOfLayersParameter.ActualName = NumberOfLayersParameter.Name;
      eldersSelector.LayerParameter.ActualName = "Layer";
      eldersSelector.Successor = null;

      shiftToRightMigrator.ClockwiseMigrationParameter.Value = new BoolValue(true);
      shiftToRightMigrator.Successor = mergingProsessor;

      mergingProsessor.Operator = mergingReducer;

      mergingReducer.Successor = subScopesCounter;

      subScopesCounter.ValueParameter.ActualName = CurrentPopulationSizeParameter.Name;
      subScopesCounter.AccumulateParameter.Value = new BoolValue(false);
      subScopesCounter.Successor = reduceToPopulationSizeBranch;

      reduceToPopulationSizeBranch.ConditionParameter.ActualName = ReduceToPopulationSizeParameter.Name;
      reduceToPopulationSizeBranch.TrueBranch = countCalculator;

      countCalculator.CollectedValues.Add(new LookupParameter<IntValue>(PopulationSizeParameter.Name));
      countCalculator.CollectedValues.Add(new LookupParameter<IntValue>(CurrentPopulationSizeParameter.Name));
      countCalculator.ExpressionParameter.Value = new StringValue("CurrentPopulationSize PopulationSize CurrentPopulationSize PopulationSize < if toint");
      countCalculator.ExpressionResultParameter.ActualName = CurrentPopulationSizeParameter.Name;
      countCalculator.Successor = bestSelector;

      bestSelector.NumberOfSelectedSubScopesParameter.ActualName = CurrentPopulationSizeParameter.Name;
      bestSelector.CopySelected = new BoolValue(false);
      bestSelector.Successor = rightReducer;

      return eldersEmigrator;
    }
예제 #5
0
 private RightReducer(RightReducer original, Cloner cloner) : base(original, cloner)
 {
 }
    private void Initialize() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
      Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("BestKnownQuality", "The best known quality value found so far."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
      Parameters.Add(new LookupParameter<IntValue>("Iterations", "The iterations to count."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The maximum number of generations which should be processed."));
      Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to analyze the solution."));
      Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of evaluated solutions."));
      Parameters.Add(new ValueLookupParameter<ILocalImprovementOperator>("LocalImprovement", "The local improvement operation."));
      Parameters.Add(new ValueLookupParameter<IMultiNeighborhoodShakingOperator>("ShakingOperator", "The shaking operation."));
      Parameters.Add(new LookupParameter<IntValue>("CurrentNeighborhoodIndex", "The index of the current shaking operation that should be applied."));
      Parameters.Add(new LookupParameter<IntValue>("NeighborhoodCount", "The number of neighborhood operators used for shaking."));
      #endregion

      #region Create operators
      VariableCreator variableCreator = new VariableCreator();
      SubScopesProcessor subScopesProcessor0 = new SubScopesProcessor();
      Assigner bestQualityInitializer = new Assigner();
      Placeholder analyzer1 = new Placeholder();
      ResultsCollector resultsCollector1 = new ResultsCollector();

      CombinedOperator iteration = new CombinedOperator();
      Assigner iterationInit = new Assigner();

      SubScopesCloner createChild = new SubScopesCloner();
      SubScopesProcessor childProcessor = new SubScopesProcessor();

      Assigner qualityAssigner = new Assigner();
      Placeholder shaking = new Placeholder();
      Placeholder localImprovement = new Placeholder();
      Placeholder evaluator = new Placeholder();
      IntCounter evalCounter = new IntCounter();

      QualityComparator qualityComparator = new QualityComparator();
      ConditionalBranch improvesQualityBranch = new ConditionalBranch();

      Assigner bestQualityUpdater = new Assigner();

      BestSelector bestSelector = new BestSelector();
      RightReducer rightReducer = new RightReducer();

      IntCounter indexCounter = new IntCounter();
      Assigner indexResetter = new Assigner();

      Placeholder analyzer2 = new Placeholder();

      Comparator indexComparator = new Comparator();
      ConditionalBranch indexTermination = new ConditionalBranch();

      IntCounter iterationsCounter = new IntCounter();
      Comparator iterationsComparator = new Comparator();
      ConditionalBranch iterationsTermination = new ConditionalBranch();

      variableCreator.CollectedValues.Add(new ValueParameter<BoolValue>("IsBetter", new BoolValue(false)));
      variableCreator.CollectedValues.Add(new ValueParameter<DoubleValue>("BestQuality", new DoubleValue(0)));

      bestQualityInitializer.Name = "Initialize BestQuality";
      bestQualityInitializer.LeftSideParameter.ActualName = "BestQuality";
      bestQualityInitializer.RightSideParameter.ActualName = QualityParameter.Name;

      analyzer1.Name = "Analyzer (placeholder)";
      analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name;

      resultsCollector1.CopyValue = new BoolValue(false);
      resultsCollector1.CollectedValues.Add(new LookupParameter<DoubleValue>("Best Quality", null, "BestQuality"));
      resultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name;

      iteration.Name = "MainLoop Body";

      iterationInit.Name = "Init k = 0";
      iterationInit.LeftSideParameter.ActualName = CurrentNeighborhoodIndexParameter.Name;
      iterationInit.RightSideParameter.Value = new IntValue(0);

      createChild.Name = "Clone solution";

      qualityAssigner.Name = "Assign quality";
      qualityAssigner.LeftSideParameter.ActualName = "OriginalQuality";
      qualityAssigner.RightSideParameter.ActualName = QualityParameter.Name;

      shaking.Name = "Shaking operator (placeholder)";
      shaking.OperatorParameter.ActualName = ShakingOperatorParameter.Name;

      localImprovement.Name = "Local improvement operator (placeholder)";
      localImprovement.OperatorParameter.ActualName = LocalImprovementParameter.Name;

      evaluator.Name = "Evaluation operator (placeholder)";
      evaluator.OperatorParameter.ActualName = EvaluatorParameter.Name;

      evalCounter.Name = "Count evaluations";
      evalCounter.Increment.Value = 1;
      evalCounter.ValueParameter.ActualName = EvaluatedSolutionsParameter.ActualName;

      qualityComparator.LeftSideParameter.ActualName = QualityParameter.Name;
      qualityComparator.RightSideParameter.ActualName = "OriginalQuality";
      qualityComparator.ResultParameter.ActualName = "IsBetter";

      improvesQualityBranch.ConditionParameter.ActualName = "IsBetter";

      bestQualityUpdater.Name = "Update BestQuality";
      bestQualityUpdater.LeftSideParameter.ActualName = "BestQuality";
      bestQualityUpdater.RightSideParameter.ActualName = QualityParameter.Name;

      bestSelector.CopySelected = new BoolValue(false);
      bestSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
      bestSelector.NumberOfSelectedSubScopesParameter.Value = new IntValue(1);
      bestSelector.QualityParameter.ActualName = QualityParameter.Name;

      indexCounter.Name = "Count neighborhood index";
      indexCounter.Increment.Value = 1;
      indexCounter.ValueParameter.ActualName = CurrentNeighborhoodIndexParameter.Name;

      indexResetter.Name = "Reset neighborhood index";
      indexResetter.LeftSideParameter.ActualName = CurrentNeighborhoodIndexParameter.Name;
      indexResetter.RightSideParameter.Value = new IntValue(0);

      analyzer2.Name = "Analyzer (placeholder)";
      analyzer2.OperatorParameter.ActualName = AnalyzerParameter.Name;

      iterationsCounter.Name = "Iterations Counter";
      iterationsCounter.Increment = new IntValue(1);
      iterationsCounter.ValueParameter.ActualName = IterationsParameter.Name;

      iterationsComparator.Name = "Iterations >= MaximumIterations";
      iterationsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      iterationsComparator.LeftSideParameter.ActualName = IterationsParameter.Name;
      iterationsComparator.RightSideParameter.ActualName = MaximumIterationsParameter.Name;
      iterationsComparator.ResultParameter.ActualName = "Terminate";

      iterationsTermination.Name = "Iterations Termination Condition";
      iterationsTermination.ConditionParameter.ActualName = "Terminate";

      indexComparator.Name = "k < k_max (index condition)";
      indexComparator.LeftSideParameter.ActualName = CurrentNeighborhoodIndexParameter.Name;
      indexComparator.RightSideParameter.ActualName = NeighborhoodCountParameter.Name;
      indexComparator.Comparison = new Comparison(ComparisonType.Less);
      indexComparator.ResultParameter.ActualName = "ContinueIteration";

      indexTermination.Name = "Index Termination Condition";
      indexTermination.ConditionParameter.ActualName = "ContinueIteration";
      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = variableCreator;
      variableCreator.Successor = subScopesProcessor0;
      subScopesProcessor0.Operators.Add(bestQualityInitializer);
      subScopesProcessor0.Successor = analyzer1;
      analyzer1.Successor = resultsCollector1;
      /////////
      resultsCollector1.Successor = iteration;

      iteration.OperatorGraph.InitialOperator = iterationInit;
      iteration.Successor = iterationsCounter;
      iterationInit.Successor = createChild;

      createChild.Successor = childProcessor;
      childProcessor.Operators.Add(new EmptyOperator());
      childProcessor.Operators.Add(qualityAssigner);
      childProcessor.Successor = bestSelector;
      /////////
      qualityAssigner.Successor = shaking;
      shaking.Successor = evaluator;
      evaluator.Successor = evalCounter;
      evalCounter.Successor = localImprovement;
      localImprovement.Successor = qualityComparator;
      qualityComparator.Successor = improvesQualityBranch;
      improvesQualityBranch.TrueBranch = bestQualityUpdater;
      improvesQualityBranch.FalseBranch = indexCounter;

      bestQualityUpdater.Successor = indexResetter;
      indexResetter.Successor = null;

      indexCounter.Successor = null;
      /////////
      bestSelector.Successor = rightReducer;
      rightReducer.Successor = analyzer2;
      analyzer2.Successor = indexComparator;
      indexComparator.Successor = indexTermination;
      indexTermination.TrueBranch = createChild;
      indexTermination.FalseBranch = null;

      iterationsCounter.Successor = iterationsComparator;
      iterationsComparator.Successor = iterationsTermination;
      iterationsTermination.TrueBranch = null;
      iterationsTermination.FalseBranch = iteration;
      #endregion
    }
    private void Initialize() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
      Parameters.Add(new ValueLookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
      Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of evaluated solutions."));
      Parameters.Add(new ValueLookupParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
      Parameters.Add(new LookupParameter<DoubleValue>("ComparisonFactor", "The comparison factor is used to determine whether the offspring should be compared to the better parent, the worse parent or a quality value linearly interpolated between them. It is in the range [0;1]."));
      Parameters.Add(new LookupParameter<DoubleValue>("CurrentSuccessRatio", "The current success ratio."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("SuccessRatio", "The ratio of successful to total children that should be achieved."));
      Parameters.Add(new LookupParameter<DoubleValue>("SelectionPressure", "The actual selection pressure."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("MaximumSelectionPressure", "The maximum selection pressure that terminates the algorithm."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("OffspringSelectionBeforeMutation", "True if the offspring selection step should be applied before mutation, false if it should be applied after mutation."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded."));
      #endregion

      #region Create operators
      Placeholder selector = new Placeholder();
      SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
      ChildrenCreator childrenCreator = new ChildrenCreator();
      ConditionalBranch osBeforeMutationBranch = new ConditionalBranch();
      UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
      Placeholder crossover1 = new Placeholder();
      UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
      Placeholder evaluator1 = new Placeholder();
      SubScopesCounter subScopesCounter1 = new SubScopesCounter();
      WeightedParentsQualityComparator qualityComparer1 = new WeightedParentsQualityComparator();
      SubScopesRemover subScopesRemover1 = new SubScopesRemover();
      UniformSubScopesProcessor uniformSubScopesProcessor3 = new UniformSubScopesProcessor();
      StochasticBranch mutationBranch1 = new StochasticBranch();
      Placeholder mutator1 = new Placeholder();
      VariableCreator variableCreator1 = new VariableCreator();
      VariableCreator variableCreator2 = new VariableCreator();
      ConditionalSelector conditionalSelector = new ConditionalSelector();
      SubScopesProcessor subScopesProcessor2 = new SubScopesProcessor();
      UniformSubScopesProcessor uniformSubScopesProcessor4 = new UniformSubScopesProcessor();
      Placeholder evaluator2 = new Placeholder();
      SubScopesCounter subScopesCounter2 = new SubScopesCounter();
      MergingReducer mergingReducer1 = new MergingReducer();
      UniformSubScopesProcessor uniformSubScopesProcessor5 = new UniformSubScopesProcessor();
      Placeholder crossover2 = new Placeholder();
      StochasticBranch mutationBranch2 = new StochasticBranch();
      Placeholder mutator2 = new Placeholder();
      UniformSubScopesProcessor uniformSubScopesProcessor6 = new UniformSubScopesProcessor();
      Placeholder evaluator3 = new Placeholder();
      SubScopesCounter subScopesCounter3 = new SubScopesCounter();
      WeightedParentsQualityComparator qualityComparer2 = new WeightedParentsQualityComparator();
      SubScopesRemover subScopesRemover2 = new SubScopesRemover();
      OffspringSelector offspringSelector = new OffspringSelector();
      SubScopesProcessor subScopesProcessor3 = new SubScopesProcessor();
      BestSelector bestSelector = new BestSelector();
      WorstSelector worstSelector = new WorstSelector();
      RightReducer rightReducer = new RightReducer();
      LeftReducer leftReducer = new LeftReducer();
      MergingReducer mergingReducer2 = new MergingReducer();
      ConditionalBranch reevaluateElitesBranch = new ConditionalBranch();
      UniformSubScopesProcessor uniformSubScopesProcessor7 = new UniformSubScopesProcessor();
      Placeholder evaluator4 = new Placeholder();
      SubScopesCounter subScopesCounter4 = new SubScopesCounter();

      selector.Name = "Selector (placeholder)";
      selector.OperatorParameter.ActualName = SelectorParameter.Name;

      childrenCreator.ParentsPerChild = new IntValue(2);

      osBeforeMutationBranch.Name = "Apply OS before mutation?";
      osBeforeMutationBranch.ConditionParameter.ActualName = OffspringSelectionBeforeMutationParameter.Name;

      crossover1.Name = "Crossover (placeholder)";
      crossover1.OperatorParameter.ActualName = CrossoverParameter.Name;

      uniformSubScopesProcessor2.Parallel.Value = true;

      evaluator1.Name = "Evaluator (placeholder)";
      evaluator1.OperatorParameter.ActualName = EvaluatorParameter.Name;

      subScopesCounter1.Name = "Increment EvaluatedSolutions";
      subScopesCounter1.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;

      qualityComparer1.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
      qualityComparer1.LeftSideParameter.ActualName = QualityParameter.Name;
      qualityComparer1.MaximizationParameter.ActualName = MaximizationParameter.Name;
      qualityComparer1.RightSideParameter.ActualName = QualityParameter.Name;
      qualityComparer1.ResultParameter.ActualName = "SuccessfulOffspring";

      subScopesRemover1.RemoveAllSubScopes = true;

      mutationBranch1.ProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
      mutationBranch1.RandomParameter.ActualName = RandomParameter.Name;

      mutator1.Name = "Mutator (placeholder)";
      mutator1.OperatorParameter.ActualName = MutatorParameter.Name;

      variableCreator1.Name = "MutatedOffspring = true";
      variableCreator1.CollectedValues.Add(new ValueParameter<BoolValue>("MutatedOffspring", null, new BoolValue(true), false));

      variableCreator2.Name = "MutatedOffspring = false";
      variableCreator2.CollectedValues.Add(new ValueParameter<BoolValue>("MutatedOffspring", null, new BoolValue(false), false));

      conditionalSelector.ConditionParameter.ActualName = "MutatedOffspring";
      conditionalSelector.ConditionParameter.Depth = 1;
      conditionalSelector.CopySelected.Value = false;

      uniformSubScopesProcessor4.Parallel.Value = true;

      evaluator2.Name = "Evaluator (placeholder)";
      evaluator2.OperatorParameter.ActualName = EvaluatorParameter.Name;

      subScopesCounter2.Name = "Increment EvaluatedSolutions";
      subScopesCounter2.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;

      crossover2.Name = "Crossover (placeholder)";
      crossover2.OperatorParameter.ActualName = CrossoverParameter.Name;

      mutationBranch2.ProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
      mutationBranch2.RandomParameter.ActualName = RandomParameter.Name;

      mutator2.Name = "Mutator (placeholder)";
      mutator2.OperatorParameter.ActualName = MutatorParameter.Name;

      uniformSubScopesProcessor6.Parallel.Value = true;

      evaluator3.Name = "Evaluator (placeholder)";
      evaluator3.OperatorParameter.ActualName = EvaluatorParameter.Name;

      subScopesCounter3.Name = "Increment EvaluatedSolutions";
      subScopesCounter3.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;

      qualityComparer2.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
      qualityComparer2.LeftSideParameter.ActualName = QualityParameter.Name;
      qualityComparer2.MaximizationParameter.ActualName = MaximizationParameter.Name;
      qualityComparer2.RightSideParameter.ActualName = QualityParameter.Name;
      qualityComparer2.ResultParameter.ActualName = "SuccessfulOffspring";

      subScopesRemover2.RemoveAllSubScopes = true;

      offspringSelector.CurrentSuccessRatioParameter.ActualName = CurrentSuccessRatioParameter.Name;
      offspringSelector.MaximumSelectionPressureParameter.ActualName = MaximumSelectionPressureParameter.Name;
      offspringSelector.SelectionPressureParameter.ActualName = SelectionPressureParameter.Name;
      offspringSelector.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name;
      offspringSelector.OffspringPopulationParameter.ActualName = "OffspringPopulation";
      offspringSelector.OffspringPopulationWinnersParameter.ActualName = "OffspringPopulationWinners";
      offspringSelector.SuccessfulOffspringParameter.ActualName = "SuccessfulOffspring";
      offspringSelector.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name;

      bestSelector.CopySelected = new BoolValue(false);
      bestSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
      bestSelector.NumberOfSelectedSubScopesParameter.ActualName = ElitesParameter.Name;
      bestSelector.QualityParameter.ActualName = QualityParameter.Name;

      worstSelector.CopySelected = new BoolValue(false);
      worstSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
      worstSelector.NumberOfSelectedSubScopesParameter.ActualName = ElitesParameter.Name;
      worstSelector.QualityParameter.ActualName = QualityParameter.Name;

      reevaluateElitesBranch.ConditionParameter.ActualName = "ReevaluateElites";
      reevaluateElitesBranch.Name = "Reevaluate elites ?";

      uniformSubScopesProcessor7.Parallel.Value = true;

      evaluator4.Name = "Evaluator (placeholder)";
      evaluator4.OperatorParameter.ActualName = EvaluatorParameter.Name;

      subScopesCounter4.Name = "Increment EvaluatedSolutions";
      subScopesCounter4.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = selector;
      selector.Successor = subScopesProcessor1;
      subScopesProcessor1.Operators.Add(new EmptyOperator());
      subScopesProcessor1.Operators.Add(childrenCreator);
      subScopesProcessor1.Successor = offspringSelector;
      childrenCreator.Successor = osBeforeMutationBranch;
      osBeforeMutationBranch.TrueBranch = uniformSubScopesProcessor1;
      osBeforeMutationBranch.FalseBranch = uniformSubScopesProcessor5;
      osBeforeMutationBranch.Successor = null;
      uniformSubScopesProcessor1.Operator = crossover1;
      uniformSubScopesProcessor1.Successor = uniformSubScopesProcessor2;
      crossover1.Successor = null;
      uniformSubScopesProcessor2.Operator = evaluator1;
      uniformSubScopesProcessor2.Successor = subScopesCounter1;
      evaluator1.Successor = qualityComparer1;
      qualityComparer1.Successor = subScopesRemover1;
      subScopesRemover1.Successor = null;
      subScopesCounter1.Successor = uniformSubScopesProcessor3;
      uniformSubScopesProcessor3.Operator = mutationBranch1;
      uniformSubScopesProcessor3.Successor = conditionalSelector;
      mutationBranch1.FirstBranch = mutator1;
      mutationBranch1.SecondBranch = variableCreator2;
      mutationBranch1.Successor = null;
      mutator1.Successor = variableCreator1;
      variableCreator1.Successor = null;
      variableCreator2.Successor = null;
      conditionalSelector.Successor = subScopesProcessor2;
      subScopesProcessor2.Operators.Add(new EmptyOperator());
      subScopesProcessor2.Operators.Add(uniformSubScopesProcessor4);
      subScopesProcessor2.Successor = mergingReducer1;
      uniformSubScopesProcessor4.Operator = evaluator2;
      uniformSubScopesProcessor4.Successor = subScopesCounter2;
      evaluator2.Successor = null;
      subScopesCounter2.Successor = null;
      mergingReducer1.Successor = null;
      uniformSubScopesProcessor5.Operator = crossover2;
      uniformSubScopesProcessor5.Successor = uniformSubScopesProcessor6;
      crossover2.Successor = mutationBranch2;
      mutationBranch2.FirstBranch = mutator2;
      mutationBranch2.SecondBranch = null;
      mutationBranch2.Successor = null;
      mutator2.Successor = null;
      uniformSubScopesProcessor6.Operator = evaluator3;
      uniformSubScopesProcessor6.Successor = subScopesCounter3;
      evaluator3.Successor = qualityComparer2;
      qualityComparer2.Successor = subScopesRemover2;
      subScopesRemover2.Successor = null;
      subScopesCounter3.Successor = null;
      offspringSelector.OffspringCreator = selector;
      offspringSelector.Successor = subScopesProcessor3;
      subScopesProcessor3.Operators.Add(bestSelector);
      subScopesProcessor3.Operators.Add(worstSelector);
      subScopesProcessor3.Successor = mergingReducer2;
      bestSelector.Successor = rightReducer;
      rightReducer.Successor = reevaluateElitesBranch;
      reevaluateElitesBranch.TrueBranch = uniformSubScopesProcessor7;
      uniformSubScopesProcessor7.Operator = evaluator4;
      uniformSubScopesProcessor7.Successor = subScopesCounter4;
      subScopesCounter4.Successor = null;
      reevaluateElitesBranch.FalseBranch = null;
      reevaluateElitesBranch.Successor = null;
      worstSelector.Successor = leftReducer;
      leftReducer.Successor = null;
      mergingReducer2.Successor = null;
      #endregion
    }
    private void Initialize() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("BestKnownQuality", "The best known quality value found so far."));
      Parameters.Add(new ValueLookupParameter<IntValue>("PopulationSize", "µ (mu) - the size of the population."));
      Parameters.Add(new ValueLookupParameter<IntValue>("ParentsPerChild", "ρ (rho) - how many parents should be recombined."));
      Parameters.Add(new ValueLookupParameter<IntValue>("Children", "λ (lambda) - the size of the offspring population."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumGenerations", "The maximum number of generations which should be processed."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("PlusSelection", "True for plus selection (elitist population), false for comma selection (non-elitist population)."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
      Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Recombinator", "The operator used to cross solutions."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
      Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to analyze each generation."));
      Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated."));
      Parameters.Add(new ScopeParameter("CurrentScope", "The current scope which represents a population of solutions on which the EvolutionStrategy should be applied."));
      Parameters.Add(new ValueLookupParameter<IOperator>("StrategyParameterManipulator", "The operator to mutate the endogeneous strategy parameters."));
      Parameters.Add(new ValueLookupParameter<IOperator>("StrategyParameterCrossover", "The operator to cross the endogeneous strategy parameters."));
      #endregion

      #region Create operators
      VariableCreator variableCreator = new VariableCreator();
      ResultsCollector resultsCollector1 = new ResultsCollector();
      Placeholder analyzer1 = new Placeholder();
      WithoutRepeatingBatchedRandomSelector selector = new WithoutRepeatingBatchedRandomSelector();
      SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
      Comparator useRecombinationComparator = new Comparator();
      ConditionalBranch useRecombinationBranch = new ConditionalBranch();
      ChildrenCreator childrenCreator = new ChildrenCreator();
      UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
      Placeholder recombinator = new Placeholder();
      Placeholder strategyRecombinator = new Placeholder();
      Placeholder strategyMutator1 = new Placeholder();
      Placeholder mutator1 = new Placeholder();
      SubScopesRemover subScopesRemover = new SubScopesRemover();
      UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
      Placeholder strategyMutator2 = new Placeholder();
      Placeholder mutator2 = new Placeholder();
      UniformSubScopesProcessor uniformSubScopesProcessor3 = new UniformSubScopesProcessor();
      Placeholder evaluator = new Placeholder();
      SubScopesCounter subScopesCounter = new SubScopesCounter();
      ConditionalBranch plusOrCommaReplacementBranch = new ConditionalBranch();
      MergingReducer plusReplacement = new MergingReducer();
      RightReducer commaReplacement = new RightReducer();
      BestSelector bestSelector = new BestSelector();
      RightReducer rightReducer = new RightReducer();
      IntCounter intCounter = new IntCounter();
      Comparator comparator = new Comparator();
      Placeholder analyzer2 = new Placeholder();
      ConditionalBranch conditionalBranch = new ConditionalBranch();
      ConditionalBranch reevaluateElitesBranch = new ConditionalBranch();
      SubScopesProcessor subScopesProcessor2 = new SubScopesProcessor();
      UniformSubScopesProcessor uniformSubScopesProcessor4 = new UniformSubScopesProcessor();
      Placeholder evaluator2 = new Placeholder();
      SubScopesCounter subScopesCounter2 = new SubScopesCounter();


      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0))); // Class EvolutionStrategy expects this to be called Generations

      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
      resultsCollector1.ResultsParameter.ActualName = "Results";

      analyzer1.Name = "Analyzer (placeholder)";
      analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name;

      selector.Name = "ES Random Selector";
      selector.RandomParameter.ActualName = RandomParameter.Name;
      selector.ParentsPerChildParameter.ActualName = ParentsPerChildParameter.Name;
      selector.ChildrenParameter.ActualName = ChildrenParameter.Name;

      useRecombinationComparator.Name = "ParentsPerChild > 1";
      useRecombinationComparator.LeftSideParameter.ActualName = ParentsPerChildParameter.Name;
      useRecombinationComparator.RightSideParameter.Value = new IntValue(1);
      useRecombinationComparator.Comparison = new Comparison(ComparisonType.Greater);
      useRecombinationComparator.ResultParameter.ActualName = "UseRecombination";

      useRecombinationBranch.Name = "Use Recombination?";
      useRecombinationBranch.ConditionParameter.ActualName = "UseRecombination";

      childrenCreator.ParentsPerChild = null;
      childrenCreator.ParentsPerChildParameter.ActualName = ParentsPerChildParameter.Name;

      recombinator.Name = "Recombinator (placeholder)";
      recombinator.OperatorParameter.ActualName = RecombinatorParameter.Name;

      strategyRecombinator.Name = "Strategy Parameter Recombinator (placeholder)";
      strategyRecombinator.OperatorParameter.ActualName = StrategyParameterCrossoverParameter.Name;

      strategyMutator1.Name = "Strategy Parameter Manipulator (placeholder)";
      strategyMutator1.OperatorParameter.ActualName = StrategyParameterManipulatorParameter.Name;

      mutator1.Name = "Mutator (placeholder)";
      mutator1.OperatorParameter.ActualName = MutatorParameter.Name;

      subScopesRemover.RemoveAllSubScopes = true;

      strategyMutator2.Name = "Strategy Parameter Manipulator (placeholder)";
      strategyMutator2.OperatorParameter.ActualName = StrategyParameterManipulatorParameter.Name;

      mutator2.Name = "Mutator (placeholder)";
      mutator2.OperatorParameter.ActualName = MutatorParameter.Name;

      uniformSubScopesProcessor3.Parallel.Value = true;

      evaluator.Name = "Evaluator (placeholder)";
      evaluator.OperatorParameter.ActualName = EvaluatorParameter.Name;

      subScopesCounter.Name = "Increment EvaluatedSolutions";
      subScopesCounter.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;

      plusOrCommaReplacementBranch.ConditionParameter.ActualName = PlusSelectionParameter.Name;

      bestSelector.CopySelected = new BoolValue(false);
      bestSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
      bestSelector.NumberOfSelectedSubScopesParameter.ActualName = PopulationSizeParameter.Name;
      bestSelector.QualityParameter.ActualName = QualityParameter.Name;

      intCounter.Increment = new IntValue(1);
      intCounter.ValueParameter.ActualName = "Generations";

      comparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      comparator.LeftSideParameter.ActualName = "Generations";
      comparator.ResultParameter.ActualName = "Terminate";
      comparator.RightSideParameter.ActualName = MaximumGenerationsParameter.Name;

      analyzer2.Name = "Analyzer (placeholder)";
      analyzer2.OperatorParameter.ActualName = AnalyzerParameter.Name;

      conditionalBranch.ConditionParameter.ActualName = "Terminate";

      reevaluateElitesBranch.ConditionParameter.ActualName = "ReevaluateElites";
      reevaluateElitesBranch.Name = "Reevaluate elites ?";

      uniformSubScopesProcessor4.Parallel.Value = true;

      evaluator2.Name = "Evaluator (placeholder)";
      evaluator2.OperatorParameter.ActualName = EvaluatorParameter.Name;

      subScopesCounter2.Name = "Increment EvaluatedSolutions";
      subScopesCounter2.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = variableCreator;
      variableCreator.Successor = resultsCollector1;
      resultsCollector1.Successor = analyzer1;
      analyzer1.Successor = selector;
      selector.Successor = subScopesProcessor1;
      subScopesProcessor1.Operators.Add(new EmptyOperator());
      subScopesProcessor1.Operators.Add(useRecombinationComparator);
      subScopesProcessor1.Successor = plusOrCommaReplacementBranch;
      useRecombinationComparator.Successor = useRecombinationBranch;
      useRecombinationBranch.TrueBranch = childrenCreator;
      useRecombinationBranch.FalseBranch = uniformSubScopesProcessor2;
      useRecombinationBranch.Successor = uniformSubScopesProcessor3;
      childrenCreator.Successor = uniformSubScopesProcessor1;
      uniformSubScopesProcessor1.Operator = recombinator;
      uniformSubScopesProcessor1.Successor = null;
      recombinator.Successor = strategyRecombinator;
      strategyRecombinator.Successor = strategyMutator1;
      strategyMutator1.Successor = mutator1;
      mutator1.Successor = subScopesRemover;
      subScopesRemover.Successor = null;
      uniformSubScopesProcessor2.Operator = strategyMutator2;
      uniformSubScopesProcessor2.Successor = null;
      strategyMutator2.Successor = mutator2;
      mutator2.Successor = null;
      uniformSubScopesProcessor3.Operator = evaluator;
      uniformSubScopesProcessor3.Successor = subScopesCounter;
      evaluator.Successor = null;
      subScopesCounter.Successor = null;

      plusOrCommaReplacementBranch.TrueBranch = reevaluateElitesBranch;
      reevaluateElitesBranch.TrueBranch = subScopesProcessor2;
      reevaluateElitesBranch.FalseBranch = null;
      subScopesProcessor2.Operators.Add(uniformSubScopesProcessor4);
      subScopesProcessor2.Operators.Add(new EmptyOperator());
      uniformSubScopesProcessor4.Operator = evaluator2;
      uniformSubScopesProcessor4.Successor = subScopesCounter2;
      subScopesCounter2.Successor = null;
      reevaluateElitesBranch.Successor = plusReplacement;

      plusOrCommaReplacementBranch.FalseBranch = commaReplacement;
      plusOrCommaReplacementBranch.Successor = bestSelector;
      bestSelector.Successor = rightReducer;
      rightReducer.Successor = intCounter;
      intCounter.Successor = comparator;
      comparator.Successor = analyzer2;
      analyzer2.Successor = conditionalBranch;
      conditionalBranch.FalseBranch = selector;
      conditionalBranch.TrueBranch = null;
      conditionalBranch.Successor = null;
      #endregion
    }
    private void Initialize() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
      Parameters.Add(new ValueLookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
      Parameters.Add(new ValueLookupParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumGenerations", "The maximum number of generations which should be processed."));
      Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to analyze each generation."));
      Parameters.Add(new ValueLookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated."));
      Parameters.Add(new ValueLookupParameter<IntValue>("PopulationSize", "The size of the population."));
      Parameters.Add(new ScopeParameter("CurrentScope", "The current scope which represents a population of solutions on which the genetic algorithm should be applied."));
      #endregion

      #region Create operators
      VariableCreator variableCreator = new VariableCreator();
      ResultsCollector resultsCollector1 = new ResultsCollector();
      Placeholder analyzer1 = new Placeholder();
      Placeholder selector = new Placeholder();
      SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
      ChildrenCreator childrenCreator = new ChildrenCreator();
      UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
      Placeholder crossover = new Placeholder();
      StochasticBranch stochasticBranch = new StochasticBranch();
      Placeholder mutator = new Placeholder();
      SubScopesRemover subScopesRemover = new SubScopesRemover();
      UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
      Placeholder evaluator = new Placeholder();
      SubScopesCounter subScopesCounter = new SubScopesCounter();
      SubScopesProcessor subScopesProcessor2 = new SubScopesProcessor();
      BestSelector bestSelector = new BestSelector();
      RightReducer rightReducer = new RightReducer();
      MergingReducer mergingReducer = new MergingReducer();
      IntCounter intCounter = new IntCounter();
      Comparator comparator = new Comparator();
      Placeholder analyzer2 = new Placeholder();
      ConditionalBranch conditionalBranch = new ConditionalBranch();
      ConditionalBranch reevaluateElitesBranch = new ConditionalBranch();

      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0))); // Class GeneticAlgorithm expects this to be called Generations

      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
      resultsCollector1.ResultsParameter.ActualName = "Results";

      analyzer1.Name = "Analyzer";
      analyzer1.OperatorParameter.ActualName = "Analyzer";

      selector.Name = "Selector";
      selector.OperatorParameter.ActualName = "Selector";

      childrenCreator.ParentsPerChild = new IntValue(2);

      crossover.Name = "Crossover";
      crossover.OperatorParameter.ActualName = "Crossover";

      stochasticBranch.ProbabilityParameter.ActualName = "MutationProbability";
      stochasticBranch.RandomParameter.ActualName = "Random";

      mutator.Name = "Mutator";
      mutator.OperatorParameter.ActualName = "Mutator";

      subScopesRemover.RemoveAllSubScopes = true;

      uniformSubScopesProcessor2.Parallel.Value = true;

      evaluator.Name = "Evaluator";
      evaluator.OperatorParameter.ActualName = "Evaluator";

      subScopesCounter.Name = "Increment EvaluatedSolutions";
      subScopesCounter.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;

      bestSelector.CopySelected = new BoolValue(false);
      bestSelector.MaximizationParameter.ActualName = "Maximization";
      bestSelector.NumberOfSelectedSubScopesParameter.ActualName = "Elites";
      bestSelector.QualityParameter.ActualName = "Quality";

      intCounter.Increment = new IntValue(1);
      intCounter.ValueParameter.ActualName = "Generations";

      comparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      comparator.LeftSideParameter.ActualName = "Generations";
      comparator.ResultParameter.ActualName = "Terminate";
      comparator.RightSideParameter.ActualName = "MaximumGenerations";

      analyzer2.Name = "Analyzer";
      analyzer2.OperatorParameter.ActualName = "Analyzer";

      conditionalBranch.ConditionParameter.ActualName = "Terminate";

      reevaluateElitesBranch.ConditionParameter.ActualName = "ReevaluateElites";
      reevaluateElitesBranch.Name = "Reevaluate elites ?";
      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = variableCreator;
      variableCreator.Successor = resultsCollector1;
      resultsCollector1.Successor = analyzer1;
      analyzer1.Successor = selector;
      selector.Successor = subScopesProcessor1;
      subScopesProcessor1.Operators.Add(new EmptyOperator());
      subScopesProcessor1.Operators.Add(childrenCreator);
      subScopesProcessor1.Successor = subScopesProcessor2;
      childrenCreator.Successor = uniformSubScopesProcessor1;
      uniformSubScopesProcessor1.Operator = crossover;
      uniformSubScopesProcessor1.Successor = uniformSubScopesProcessor2;
      crossover.Successor = stochasticBranch;
      stochasticBranch.FirstBranch = mutator;
      stochasticBranch.SecondBranch = null;
      stochasticBranch.Successor = subScopesRemover;
      mutator.Successor = null;
      subScopesRemover.Successor = null;
      uniformSubScopesProcessor2.Operator = evaluator;
      uniformSubScopesProcessor2.Successor = subScopesCounter;
      evaluator.Successor = null;
      subScopesCounter.Successor = null;
      subScopesProcessor2.Operators.Add(bestSelector);
      subScopesProcessor2.Operators.Add(new EmptyOperator());
      subScopesProcessor2.Successor = mergingReducer;
      bestSelector.Successor = rightReducer;
      rightReducer.Successor = reevaluateElitesBranch;
      reevaluateElitesBranch.TrueBranch = uniformSubScopesProcessor2;
      reevaluateElitesBranch.FalseBranch = null;
      reevaluateElitesBranch.Successor = null;
      mergingReducer.Successor = intCounter;
      intCounter.Successor = comparator;
      comparator.Successor = analyzer2;
      analyzer2.Successor = conditionalBranch;
      conditionalBranch.FalseBranch = selector;
      conditionalBranch.TrueBranch = null;
      conditionalBranch.Successor = null;
      #endregion
    }
    private void Initialize() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("BestKnownQuality", "The best known quality value found so far."));
      Parameters.Add(new ValueLookupParameter<IntValue>("PopulationSize", "µ (mu) - the size of the population."));
      Parameters.Add(new ValueLookupParameter<IntValue>("ParentsPerChild", "ρ (rho) - how many parents should be recombined."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumGenerations", "The maximum number of generations which should be processed."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("PlusSelection", "True for plus selection (elitist population), false for comma selection (non-elitist population)."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
      Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Recombinator", "The operator used to cross solutions."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
      Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to analyze each generation."));
      Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated."));
      Parameters.Add(new ScopeParameter("CurrentScope", "The current scope which represents a population of solutions on which the OffspringSelectionEvolutionStrategy should be applied."));
      Parameters.Add(new ValueLookupParameter<IOperator>("StrategyParameterManipulator", "The operator to mutate the endogeneous strategy parameters."));
      Parameters.Add(new ValueLookupParameter<IOperator>("StrategyParameterCrossover", "The operator to cross the endogeneous strategy parameters."));
     
      Parameters.Add(new LookupParameter<DoubleValue>("CurrentSuccessRatio", "The current success ratio."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("SuccessRatio", "The ratio of successful to total children that should be achieved."));
      Parameters.Add(new LookupParameter<DoubleValue>("SelectionPressure", "The actual selection pressure."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("MaximumSelectionPressure", "The maximum selection pressure that terminates the algorithm."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumEvaluatedSolutions", "The maximum number of evaluated solutions."));
      Parameters.Add(new ValueLookupParameter<IntValue>("SelectedParents", "How much parents should be selected each time the offspring selection step is performed until the population is filled. This parameter should be about the same or twice the size of PopulationSize for smaller problems, and less for large problems."));
      Parameters.Add(new LookupParameter<DoubleValue>("ComparisonFactor", "The comparison factor is used to determine whether the offspring should be compared to the better parent, the worse parent or a quality value linearly interpolated between them. It is in the range [0;1]."));

      #endregion

      #region Create operators
      VariableCreator variableCreator = new VariableCreator();
      ResultsCollector resultsCollector1 = new ResultsCollector();
      Placeholder analyzer1 = new Placeholder();
      WithoutRepeatingBatchedRandomSelector selector = new WithoutRepeatingBatchedRandomSelector();
      SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
      Comparator useRecombinationComparator = new Comparator();
      ConditionalBranch useRecombinationBranch = new ConditionalBranch();
      ChildrenCreator childrenCreator = new ChildrenCreator();
      UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
      Placeholder recombinator = new Placeholder();
      Placeholder strategyRecombinator = new Placeholder();
      Placeholder strategyMutator1 = new Placeholder();
      Placeholder mutator1 = new Placeholder();
      SubScopesRemover subScopesRemover = new SubScopesRemover();
      UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
      Placeholder strategyMutator2 = new Placeholder();
      Placeholder mutator2 = new Placeholder();
      UniformSubScopesProcessor uniformSubScopesProcessor3 = new UniformSubScopesProcessor();
      Placeholder evaluator = new Placeholder();
      SubScopesCounter subScopesCounter = new SubScopesCounter();
      ConditionalBranch plusOrCommaReplacementBranch = new ConditionalBranch();
      MergingReducer plusReplacement = new MergingReducer();
      RightReducer commaReplacement = new RightReducer();
      BestSelector bestSelector = new BestSelector();
      RightReducer rightReducer = new RightReducer();
      IntCounter intCounter = new IntCounter();
      Comparator maxGenerationsComparator = new Comparator();
      Placeholder analyzer2 = new Placeholder();
      ConditionalBranch conditionalBranchTerminate = new ConditionalBranch();
      ConditionalBranch reevaluateElitesBranch = new ConditionalBranch();
      SubScopesProcessor subScopesProcessor2 = new SubScopesProcessor();
      UniformSubScopesProcessor uniformSubScopesProcessor4 = new UniformSubScopesProcessor();
      Placeholder evaluator2 = new Placeholder();
      SubScopesCounter subScopesCounter2 = new SubScopesCounter();
      WeightedParentsQualityComparator parentsComparator = new WeightedParentsQualityComparator();
      SubScopesRemover subScopesRemover_afterCompare = new SubScopesRemover();
      EvolutionStrategyOffspringSelector offspringSelector = new EvolutionStrategyOffspringSelector();
      ChildrenCopyCreator childrenCopyCreator = new ChildrenCopyCreator();
      Comparator maxSelectionPressureComparator = new Comparator();
      ConditionalBranch conditionalBranchTerminateSelPressure = new ConditionalBranch();
      Comparator maxEvaluatedSolutionsComparator = new Comparator();
      ConditionalBranch conditionalBranchTerminateEvalSolutions = new ConditionalBranch();

      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0))); // Class OffspringSelectionEvolutionStrategy expects this to be called Generations
      variableCreator.CollectedValues.Add(new ValueParameter<DoubleValue>("SelectionPressure", new DoubleValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<DoubleValue>("CurrentSuccessRatio", new DoubleValue(0)));

      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
      resultsCollector1.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Selection Pressure", "Displays the rising selection pressure during a generation.", "SelectionPressure"));
      resultsCollector1.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Success Ratio", "Indicates how many successful children were already found during a generation (relative to the population size).", "CurrentSuccessRatio"));
      resultsCollector1.CopyValue = new BoolValue(false);
      resultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name;

      analyzer1.Name = "Analyzer (placeholder)";
      analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name;

      selector.Name = "ES Random Selector";
      selector.RandomParameter.ActualName = RandomParameter.Name;
      selector.ParentsPerChildParameter.ActualName = ParentsPerChildParameter.Name;
      selector.ChildrenParameter.ActualName = SelectedParentsParameter.Name;

      useRecombinationComparator.Name = "ParentsPerChild > 1";
      useRecombinationComparator.LeftSideParameter.ActualName = ParentsPerChildParameter.Name;
      useRecombinationComparator.RightSideParameter.Value = new IntValue(1);
      useRecombinationComparator.Comparison = new Comparison(ComparisonType.Greater);
      useRecombinationComparator.ResultParameter.ActualName = "UseRecombination";

      useRecombinationBranch.Name = "Use Recombination?";
      useRecombinationBranch.ConditionParameter.ActualName = "UseRecombination";

      childrenCreator.ParentsPerChild = null;
      childrenCreator.ParentsPerChildParameter.ActualName = ParentsPerChildParameter.Name;

      recombinator.Name = "Recombinator (placeholder)";
      recombinator.OperatorParameter.ActualName = RecombinatorParameter.Name;

      strategyRecombinator.Name = "Strategy Parameter Recombinator (placeholder)";
      strategyRecombinator.OperatorParameter.ActualName = StrategyParameterCrossoverParameter.Name;

      strategyMutator1.Name = "Strategy Parameter Manipulator (placeholder)";
      strategyMutator1.OperatorParameter.ActualName = StrategyParameterManipulatorParameter.Name;

      mutator1.Name = "Mutator (placeholder)";
      mutator1.OperatorParameter.ActualName = MutatorParameter.Name;

      subScopesRemover.RemoveAllSubScopes = true;

      strategyMutator2.Name = "Strategy Parameter Manipulator (placeholder)";
      strategyMutator2.OperatorParameter.ActualName = StrategyParameterManipulatorParameter.Name;

      mutator2.Name = "Mutator (placeholder)";
      mutator2.OperatorParameter.ActualName = MutatorParameter.Name;

      uniformSubScopesProcessor3.Parallel.Value = true;

      evaluator.Name = "Evaluator (placeholder)";
      evaluator.OperatorParameter.ActualName = EvaluatorParameter.Name;

      subScopesCounter.Name = "Increment EvaluatedSolutions";
      subScopesCounter.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;

      plusOrCommaReplacementBranch.ConditionParameter.ActualName = PlusSelectionParameter.Name;

      bestSelector.CopySelected = new BoolValue(false);
      bestSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
      bestSelector.NumberOfSelectedSubScopesParameter.ActualName = PopulationSizeParameter.Name;
      bestSelector.QualityParameter.ActualName = QualityParameter.Name;

      intCounter.Increment = new IntValue(1);
      intCounter.ValueParameter.ActualName = "Generations";

      maxGenerationsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      maxGenerationsComparator.LeftSideParameter.ActualName = "Generations";
      maxGenerationsComparator.ResultParameter.ActualName = "Terminate";
      maxGenerationsComparator.RightSideParameter.ActualName = MaximumGenerationsParameter.Name;

      analyzer2.Name = "Analyzer (placeholder)";
      analyzer2.OperatorParameter.ActualName = AnalyzerParameter.Name;

      conditionalBranchTerminate.ConditionParameter.ActualName = "Terminate";

      reevaluateElitesBranch.ConditionParameter.ActualName = "ReevaluateElites";
      reevaluateElitesBranch.Name = "Reevaluate elites ?";

      uniformSubScopesProcessor4.Parallel.Value = true;

      evaluator2.Name = "Evaluator (placeholder)";
      evaluator2.OperatorParameter.ActualName = EvaluatorParameter.Name;

      subScopesCounter2.Name = "Increment EvaluatedSolutions";
      subScopesCounter2.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;

      parentsComparator.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
      parentsComparator.LeftSideParameter.ActualName = QualityParameter.Name;
      parentsComparator.RightSideParameter.ActualName = QualityParameter.Name;
      parentsComparator.MaximizationParameter.ActualName = MaximizationParameter.Name;
      parentsComparator.ResultParameter.ActualName = "SuccessfulOffspring";

      subScopesRemover_afterCompare.RemoveAllSubScopes = true;

      offspringSelector.CurrentSuccessRatioParameter.ActualName = CurrentSuccessRatioParameter.Name;
      offspringSelector.MaximumSelectionPressureParameter.ActualName = MaximumSelectionPressureParameter.Name;
      offspringSelector.SelectionPressureParameter.ActualName = SelectionPressureParameter.Name;
      offspringSelector.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name;
      offspringSelector.OffspringPopulationParameter.ActualName = "OffspringPopulation";
      offspringSelector.OffspringPopulationWinnersParameter.ActualName = "OffspringPopulationWinners";
      offspringSelector.SuccessfulOffspringParameter.ActualName = "SuccessfulOffspring";
      offspringSelector.QualityParameter.ActualName = QualityParameter.Name;

      maxSelectionPressureComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      maxSelectionPressureComparator.LeftSideParameter.ActualName = "SelectionPressure";
      maxSelectionPressureComparator.ResultParameter.ActualName = "TerminateSelectionPressure";
      maxSelectionPressureComparator.RightSideParameter.ActualName = MaximumSelectionPressureParameter.Name;

      conditionalBranchTerminateSelPressure.ConditionParameter.ActualName = "TerminateSelectionPressure";

      maxEvaluatedSolutionsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      maxEvaluatedSolutionsComparator.LeftSideParameter.ActualName = "EvaluatedSolutions";
      maxEvaluatedSolutionsComparator.ResultParameter.ActualName = "TerminateEvaluatedSolutions";
      maxEvaluatedSolutionsComparator.RightSideParameter.ActualName = MaximumEvaluatedSolutionsParameter.Name;

      conditionalBranchTerminateEvalSolutions.ConditionParameter.ActualName = "TerminateEvaluatedSolutions";

      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = variableCreator;
      variableCreator.Successor = resultsCollector1;
      resultsCollector1.Successor = analyzer1;
      analyzer1.Successor = selector;
      selector.Successor = subScopesProcessor1;
      subScopesProcessor1.Operators.Add(new EmptyOperator());
      subScopesProcessor1.Operators.Add(useRecombinationComparator);

      subScopesProcessor1.Successor = offspringSelector;
      offspringSelector.OffspringCreator = selector;
      offspringSelector.Successor = plusOrCommaReplacementBranch;

      useRecombinationComparator.Successor = useRecombinationBranch;
      useRecombinationBranch.TrueBranch = childrenCreator;

      useRecombinationBranch.FalseBranch = childrenCopyCreator;
      childrenCopyCreator.Successor = uniformSubScopesProcessor2;

      useRecombinationBranch.Successor = uniformSubScopesProcessor3;
      childrenCreator.Successor = uniformSubScopesProcessor1;
      uniformSubScopesProcessor1.Operator = recombinator;
      uniformSubScopesProcessor1.Successor = null;
      recombinator.Successor = strategyRecombinator;
      strategyRecombinator.Successor = strategyMutator1;
      strategyMutator1.Successor = mutator1;

      mutator1.Successor = null;

      uniformSubScopesProcessor2.Operator = strategyMutator2;
      uniformSubScopesProcessor2.Successor = null;
      strategyMutator2.Successor = mutator2;
      mutator2.Successor = null;
      uniformSubScopesProcessor3.Operator = evaluator;
      uniformSubScopesProcessor3.Successor = subScopesCounter;

      evaluator.Successor = parentsComparator;
      parentsComparator.Successor = subScopesRemover_afterCompare;
      subScopesRemover_afterCompare.Successor = null;
      subScopesCounter.Successor = null;

      plusOrCommaReplacementBranch.TrueBranch = reevaluateElitesBranch;
      reevaluateElitesBranch.TrueBranch = subScopesProcessor2;
      reevaluateElitesBranch.FalseBranch = null;
      subScopesProcessor2.Operators.Add(uniformSubScopesProcessor4);
      subScopesProcessor2.Operators.Add(new EmptyOperator());
      uniformSubScopesProcessor4.Operator = evaluator2;
      uniformSubScopesProcessor4.Successor = subScopesCounter2;
      subScopesCounter2.Successor = null;
      reevaluateElitesBranch.Successor = plusReplacement;

      plusReplacement.Successor = bestSelector;
      bestSelector.Successor = rightReducer;

      plusOrCommaReplacementBranch.FalseBranch = commaReplacement;
      plusOrCommaReplacementBranch.Successor = intCounter;


      intCounter.Successor = maxGenerationsComparator; 
      maxGenerationsComparator.Successor = maxSelectionPressureComparator;
      maxSelectionPressureComparator.Successor = maxEvaluatedSolutionsComparator;
      maxEvaluatedSolutionsComparator.Successor = analyzer2;
      analyzer2.Successor = conditionalBranchTerminate;
      conditionalBranchTerminate.FalseBranch = conditionalBranchTerminateSelPressure;
      conditionalBranchTerminate.TrueBranch = null;
      conditionalBranchTerminate.Successor = null;
      conditionalBranchTerminateSelPressure.FalseBranch = conditionalBranchTerminateEvalSolutions;
      conditionalBranchTerminateSelPressure.TrueBranch = null;
      conditionalBranchTerminateSelPressure.Successor = null;
      conditionalBranchTerminateEvalSolutions.FalseBranch = selector;
      conditionalBranchTerminateEvalSolutions.TrueBranch = null;
      conditionalBranchTerminateEvalSolutions.Successor = null;

      #endregion
    }
    public IslandGeneticAlgorithmMainLoop()
      : base() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("BestKnownQuality", "The best known quality value found so far."));
      Parameters.Add(new ValueLookupParameter<IntValue>("NumberOfIslands", "The number of islands."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MigrationInterval", "The number of generations that should pass between migration phases."));
      Parameters.Add(new ValueLookupParameter<PercentValue>("MigrationRate", "The proportion of individuals that should migrate between the islands."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Migrator", "The migration strategy."));
      Parameters.Add(new ValueLookupParameter<IOperator>("EmigrantsSelector", "Selects the individuals that will be migrated."));
      Parameters.Add(new ValueLookupParameter<IOperator>("ImmigrationReplacer", "Replaces some of the original population with the immigrants."));
      Parameters.Add(new ValueLookupParameter<IntValue>("PopulationSize", "The size of the population of solutions."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumGenerations", "The maximum number of generations that the algorithm should process."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
      Parameters.Add(new ValueLookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions."));
      Parameters.Add(new ValueLookupParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
      Parameters.Add(new ValueLookupParameter<ResultCollection>("Results", "The results collection to store the results."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to the analyze the islands."));
      Parameters.Add(new ValueLookupParameter<IOperator>("IslandAnalyzer", "The operator used to analyze each island."));
      Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of times a solution has been evaluated."));
      Parameters.Add(new LookupParameter<IntValue>("IslandGenerations", "The number of generations calculated on one island."));
      Parameters.Add(new LookupParameter<IntValue>("IslandEvaluatedSolutions", "The number of times a solution has been evaluated on one island."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Migrate", "Migrate the island?"));
      #endregion

      #region Create operators
      VariableCreator variableCreator = new VariableCreator();
      UniformSubScopesProcessor uniformSubScopesProcessor0 = new UniformSubScopesProcessor();
      VariableCreator islandVariableCreator = new VariableCreator();
      Placeholder islandAnalyzer1 = new Placeholder();
      LocalRandomCreator localRandomCreator = new LocalRandomCreator();
      Placeholder analyzer1 = new Placeholder();
      ResultsCollector resultsCollector1 = new ResultsCollector();
      UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
      Assigner generationsAssigner = new Assigner();
      Assigner evaluatedSolutionsAssigner = new Assigner();
      Placeholder selector = new Placeholder();
      SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
      ChildrenCreator childrenCreator = new ChildrenCreator();
      UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
      Placeholder crossover = new Placeholder();
      StochasticBranch stochasticBranch = new StochasticBranch();
      Placeholder mutator = new Placeholder();
      SubScopesRemover subScopesRemover = new SubScopesRemover();
      UniformSubScopesProcessor uniformSubScopesProcessor3 = new UniformSubScopesProcessor();
      Placeholder evaluator = new Placeholder();
      SubScopesCounter subScopesCounter = new SubScopesCounter();
      SubScopesProcessor subScopesProcessor2 = new SubScopesProcessor();
      BestSelector bestSelector = new BestSelector();
      RightReducer rightReducer = new RightReducer();
      MergingReducer mergingReducer = new MergingReducer();
      IntCounter islandGenerationsCounter = new IntCounter();
      Comparator checkIslandGenerationsReachedMaximum = new Comparator();
      ConditionalBranch checkContinueEvolution = new ConditionalBranch();
      DataReducer generationsReducer = new DataReducer();
      DataReducer evaluatedSolutionsReducer = new DataReducer();
      Placeholder islandAnalyzer2 = new Placeholder();
      UniformSubScopesProcessor uniformSubScopesProcessor5 = new UniformSubScopesProcessor();
      Placeholder emigrantsSelector = new Placeholder();
      IntCounter migrationsCounter = new IntCounter();
      Placeholder migrator = new Placeholder();
      UniformSubScopesProcessor uniformSubScopesProcessor6 = new UniformSubScopesProcessor();
      Placeholder immigrationReplacer = new Placeholder();
      Comparator generationsComparator = new Comparator();
      Placeholder analyzer2 = new Placeholder();
      ConditionalBranch generationsTerminationCondition = new ConditionalBranch();
      ConditionalBranch reevaluateElitesBranch = new ConditionalBranch();


      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Migrations", new IntValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("GenerationsSinceLastMigration", new IntValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0))); // Class IslandGeneticAlgorithm expects this to be called Generations

      islandVariableCreator.CollectedValues.Add(new ValueParameter<ResultCollection>("Results", new ResultCollection()));
      islandVariableCreator.CollectedValues.Add(new ValueParameter<IntValue>("IslandGenerations", new IntValue(0)));
      islandVariableCreator.CollectedValues.Add(new ValueParameter<IntValue>("IslandEvaluatedSolutions", new IntValue(0)));

      islandAnalyzer1.Name = "Island Analyzer (placeholder)";
      islandAnalyzer1.OperatorParameter.ActualName = IslandAnalyzerParameter.Name;

      analyzer1.Name = "Analyzer (placeholder)";
      analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name;

      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Migrations"));
      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
      resultsCollector1.CollectedValues.Add(new ScopeTreeLookupParameter<ResultCollection>("IslandResults", "Result set for each island", "Results"));
      resultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name;

      uniformSubScopesProcessor1.Parallel.Value = true;

      generationsAssigner.Name = "Initialize Island Generations";
      generationsAssigner.LeftSideParameter.ActualName = IslandGenerations.Name;
      generationsAssigner.RightSideParameter.Value = new IntValue(0);

      evaluatedSolutionsAssigner.Name = "Initialize Island evaluated solutions";
      evaluatedSolutionsAssigner.LeftSideParameter.ActualName = IslandEvaluatedSolutions.Name;
      evaluatedSolutionsAssigner.RightSideParameter.Value = new IntValue(0);

      selector.Name = "Selector (placeholder)";
      selector.OperatorParameter.ActualName = SelectorParameter.Name;

      childrenCreator.ParentsPerChild = new IntValue(2);

      crossover.Name = "Crossover (placeholder)";
      crossover.OperatorParameter.ActualName = CrossoverParameter.Name;

      stochasticBranch.ProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
      //set it to the random number generator of the island
      stochasticBranch.RandomParameter.ActualName = "LocalRandom";

      mutator.Name = "Mutator (placeholder)";
      mutator.OperatorParameter.ActualName = MutatorParameter.Name;

      subScopesRemover.RemoveAllSubScopes = true;

      evaluator.Name = "Evaluator (placeholder)";
      evaluator.OperatorParameter.ActualName = EvaluatorParameter.Name;

      subScopesCounter.Name = "Increment EvaluatedSolutions";
      subScopesCounter.ValueParameter.ActualName = IslandEvaluatedSolutions.Name;

      bestSelector.CopySelected = new BoolValue(false);
      bestSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
      bestSelector.NumberOfSelectedSubScopesParameter.ActualName = ElitesParameter.Name;
      bestSelector.QualityParameter.ActualName = QualityParameter.Name;

      islandGenerationsCounter.Name = "Increment island generatrions";
      islandGenerationsCounter.ValueParameter.ActualName = IslandGenerations.Name;
      islandGenerationsCounter.Increment = new IntValue(1);

      checkIslandGenerationsReachedMaximum.LeftSideParameter.ActualName = IslandGenerations.Name;
      checkIslandGenerationsReachedMaximum.RightSideParameter.ActualName = MigrationIntervalParameter.Name;
      checkIslandGenerationsReachedMaximum.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      checkIslandGenerationsReachedMaximum.ResultParameter.ActualName = Migrate.Name;

      checkContinueEvolution.Name = "Migrate?";
      checkContinueEvolution.ConditionParameter.ActualName = Migrate.Name;
      checkContinueEvolution.FalseBranch = selector;

      islandAnalyzer2.Name = "Island Analyzer (placeholder)";
      islandAnalyzer2.OperatorParameter.ActualName = IslandAnalyzerParameter.Name;

      generationsReducer.Name = "Increment Generations";
      generationsReducer.ParameterToReduce.ActualName = islandGenerationsCounter.ValueParameter.ActualName;
      generationsReducer.TargetParameter.ActualName = "Generations";
      generationsReducer.ReductionOperation.Value = new ReductionOperation(ReductionOperations.Min);
      generationsReducer.TargetOperation.Value = new ReductionOperation(ReductionOperations.Sum);

      evaluatedSolutionsReducer.Name = "Increment Evaluated Solutions";
      evaluatedSolutionsReducer.ParameterToReduce.ActualName = IslandEvaluatedSolutions.Name;
      evaluatedSolutionsReducer.TargetParameter.ActualName = EvaluatedSolutionsParameter.Name;
      evaluatedSolutionsReducer.ReductionOperation.Value = new ReductionOperation(ReductionOperations.Sum);
      evaluatedSolutionsReducer.TargetOperation.Value = new ReductionOperation(ReductionOperations.Sum);

      emigrantsSelector.Name = "Emigrants Selector (placeholder)";
      emigrantsSelector.OperatorParameter.ActualName = EmigrantsSelectorParameter.Name;

      migrationsCounter.Name = "Increment number of Migrations";
      migrationsCounter.ValueParameter.ActualName = "Migrations";
      migrationsCounter.Increment = new IntValue(1);

      migrator.Name = "Migrator (placeholder)";
      migrator.OperatorParameter.ActualName = MigratorParameter.Name;

      immigrationReplacer.Name = "Immigration Replacer (placeholder)";
      immigrationReplacer.OperatorParameter.ActualName = ImmigrationReplacerParameter.Name;

      generationsComparator.Name = "Generations >= MaximumGenerations ?";
      generationsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      generationsComparator.LeftSideParameter.ActualName = "Generations";
      generationsComparator.ResultParameter.ActualName = "TerminateGenerations";
      generationsComparator.RightSideParameter.ActualName = MaximumGenerationsParameter.Name;

      analyzer2.Name = "Analyzer (placeholder)";
      analyzer2.OperatorParameter.ActualName = AnalyzerParameter.Name;

      generationsTerminationCondition.Name = "Terminate?";
      generationsTerminationCondition.ConditionParameter.ActualName = "TerminateGenerations";

      reevaluateElitesBranch.ConditionParameter.ActualName = "ReevaluateElites";
      reevaluateElitesBranch.Name = "Reevaluate elites ?";
      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = variableCreator;
      variableCreator.Successor = uniformSubScopesProcessor0;
      uniformSubScopesProcessor0.Operator = islandVariableCreator;
      uniformSubScopesProcessor0.Successor = analyzer1;
      islandVariableCreator.Successor = islandAnalyzer1;
      // BackwardsCompatibility3.3
      //the local randoms are created by the island GA itself and are only here to ensure same algorithm results
      #region Backwards compatible code, remove local random creator with 3.4 and rewire the operator graph
      islandAnalyzer1.Successor = localRandomCreator;
      localRandomCreator.Successor = null;
      #endregion
      analyzer1.Successor = resultsCollector1;
      resultsCollector1.Successor = uniformSubScopesProcessor1;
      uniformSubScopesProcessor1.Operator = generationsAssigner;
      uniformSubScopesProcessor1.Successor = generationsReducer;
      generationsReducer.Successor = evaluatedSolutionsReducer;
      evaluatedSolutionsReducer.Successor = migrationsCounter;
      migrationsCounter.Successor = uniformSubScopesProcessor5;
      generationsAssigner.Successor = evaluatedSolutionsAssigner;
      evaluatedSolutionsAssigner.Successor = selector;
      selector.Successor = subScopesProcessor1;
      subScopesProcessor1.Operators.Add(new EmptyOperator());
      subScopesProcessor1.Operators.Add(childrenCreator);
      subScopesProcessor1.Successor = subScopesProcessor2;
      childrenCreator.Successor = uniformSubScopesProcessor2;
      uniformSubScopesProcessor2.Operator = crossover;
      uniformSubScopesProcessor2.Successor = uniformSubScopesProcessor3;
      crossover.Successor = stochasticBranch;
      stochasticBranch.FirstBranch = mutator;
      stochasticBranch.SecondBranch = null;
      stochasticBranch.Successor = subScopesRemover;
      mutator.Successor = null;
      subScopesRemover.Successor = null;
      uniformSubScopesProcessor3.Operator = evaluator;
      uniformSubScopesProcessor3.Successor = subScopesCounter;
      evaluator.Successor = null;
      subScopesCounter.Successor = null;
      subScopesProcessor2.Operators.Add(bestSelector);
      subScopesProcessor2.Operators.Add(new EmptyOperator());
      subScopesProcessor2.Successor = mergingReducer;
      mergingReducer.Successor = islandAnalyzer2;
      bestSelector.Successor = rightReducer;
      rightReducer.Successor = reevaluateElitesBranch;
      reevaluateElitesBranch.TrueBranch = uniformSubScopesProcessor3;
      reevaluateElitesBranch.FalseBranch = null;
      reevaluateElitesBranch.Successor = null;
      islandAnalyzer2.Successor = islandGenerationsCounter;
      islandGenerationsCounter.Successor = checkIslandGenerationsReachedMaximum;
      checkIslandGenerationsReachedMaximum.Successor = checkContinueEvolution;
      uniformSubScopesProcessor5.Operator = emigrantsSelector;
      emigrantsSelector.Successor = null;
      uniformSubScopesProcessor5.Successor = migrator;
      migrator.Successor = uniformSubScopesProcessor6;
      uniformSubScopesProcessor6.Operator = immigrationReplacer;
      uniformSubScopesProcessor6.Successor = generationsComparator;
      generationsComparator.Successor = analyzer2;
      analyzer2.Successor = generationsTerminationCondition;
      generationsTerminationCondition.TrueBranch = null;
      generationsTerminationCondition.FalseBranch = uniformSubScopesProcessor1;
      generationsTerminationCondition.Successor = null;
      #endregion
    }
예제 #12
0
 private RightReducer(RightReducer original, Cloner cloner) : base(original, cloner) { }
예제 #13
0
    private void Initialize() {
      #region Create parameters
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
      Parameters.Add(new ValueLookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
      Parameters.Add(new ValueLookupParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumGenerations", "The maximum number of generations which should be processed."));
      Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to analyze each generation."));
      Parameters.Add(new ValueLookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated."));
      Parameters.Add(new ValueLookupParameter<IntValue>("PopulationSize", "The size of the population."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MinimumPopulationSize", "The minimum size of the population of solutions."));
      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumPopulationSize", "The maximum size of the population of solutions."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("ComparisonFactor", "The comparison factor."));
      Parameters.Add(new ValueLookupParameter<IntValue>("Effort", "The maximum number of offspring created in each generation."));
      Parameters.Add(new ValueLookupParameter<IntValue>("BatchSize", "The number of children that should be created during one iteration of the offspring creation process."));
      Parameters.Add(new ValueLookupParameter<ISolutionSimilarityCalculator>("SimilarityCalculator", "The operator used to calculate the similarity between two solutions."));
      Parameters.Add(new ScopeParameter("CurrentScope", "The current scope which represents a population of solutions on which the genetic algorithm should be applied."));
      #endregion

      #region Create operators
      VariableCreator variableCreator = new VariableCreator();
      Assigner assigner1 = new Assigner();
      ResultsCollector resultsCollector = new ResultsCollector();
      Placeholder analyzer1 = new Placeholder();
      Placeholder selector = new Placeholder();
      SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
      ChildrenCreator childrenCreator = new ChildrenCreator();
      UniformSubScopesProcessor uniformSubScopesProcessor = new UniformSubScopesProcessor();
      Placeholder crossover = new Placeholder();
      StochasticBranch stochasticBranch = new StochasticBranch();
      Placeholder mutator = new Placeholder();
      Placeholder evaluator = new Placeholder();
      WeightedParentsQualityComparator weightedParentsQualityComparator = new WeightedParentsQualityComparator();
      SubScopesRemover subScopesRemover = new SubScopesRemover();
      IntCounter intCounter1 = new IntCounter();
      IntCounter intCounter2 = new IntCounter();
      ConditionalSelector conditionalSelector = new ConditionalSelector();
      RightReducer rightReducer1 = new RightReducer();
      DuplicatesSelector duplicateSelector = new DuplicatesSelector();
      LeftReducer leftReducer1 = new LeftReducer();
      ProgressiveOffspringPreserver progressiveOffspringSelector = new ProgressiveOffspringPreserver();
      SubScopesCounter subScopesCounter2 = new SubScopesCounter();
      ExpressionCalculator calculator1 = new ExpressionCalculator();
      ConditionalBranch conditionalBranch1 = new ConditionalBranch();
      Comparator comparator1 = new Comparator();
      ConditionalBranch conditionalBranch2 = new ConditionalBranch();
      LeftReducer leftReducer2 = new LeftReducer();
      SubScopesProcessor subScopesProcessor2 = new SubScopesProcessor();
      BestSelector bestSelector = new BestSelector();
      RightReducer rightReducer2 = new RightReducer();
      ScopeCleaner scopeCleaner = new ScopeCleaner();
      ScopeRestorer scopeRestorer = new ScopeRestorer();
      MergingReducer mergingReducer = new MergingReducer();
      IntCounter intCounter3 = new IntCounter();
      SubScopesCounter subScopesCounter3 = new SubScopesCounter();
      ExpressionCalculator calculator2 = new ExpressionCalculator();
      Comparator comparator2 = new Comparator();
      ConditionalBranch conditionalBranch3 = new ConditionalBranch();
      Placeholder analyzer2 = new Placeholder();
      Comparator comparator3 = new Comparator();
      ConditionalBranch conditionalBranch4 = new ConditionalBranch();
      Comparator comparator4 = new Comparator();
      ConditionalBranch conditionalBranch5 = new ConditionalBranch();
      Assigner assigner3 = new Assigner();
      Assigner assigner4 = new Assigner();
      Assigner assigner5 = new Assigner();
      ConditionalBranch reevaluateElitesBranch = new ConditionalBranch();
      UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
      Placeholder evaluator2 = new Placeholder();
      SubScopesCounter subScopesCounter4 = new SubScopesCounter();

      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0))); // Class RAPGA expects this to be called Generations
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("CurrentPopulationSize", new IntValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("NumberOfCreatedOffspring", new IntValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("NumberOfSuccessfulOffspring", new IntValue(0)));
      variableCreator.CollectedValues.Add(new ValueParameter<ScopeList>("OffspringList", new ScopeList()));

      assigner1.Name = "Initialize CurrentPopulationSize";
      assigner1.LeftSideParameter.ActualName = "CurrentPopulationSize";
      assigner1.RightSideParameter.ActualName = PopulationSizeParameter.Name;

      resultsCollector.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
      resultsCollector.CollectedValues.Add(new LookupParameter<IntValue>("CurrentPopulationSize"));
      resultsCollector.ResultsParameter.ActualName = "Results";

      analyzer1.Name = "Analyzer";
      analyzer1.OperatorParameter.ActualName = "Analyzer";

      selector.Name = "Selector";
      selector.OperatorParameter.ActualName = "Selector";

      childrenCreator.ParentsPerChild = new IntValue(2);

      uniformSubScopesProcessor.Parallel.Value = true;

      crossover.Name = "Crossover";
      crossover.OperatorParameter.ActualName = "Crossover";

      stochasticBranch.ProbabilityParameter.ActualName = "MutationProbability";
      stochasticBranch.RandomParameter.ActualName = "Random";

      mutator.Name = "Mutator";
      mutator.OperatorParameter.ActualName = "Mutator";

      evaluator.Name = "Evaluator";
      evaluator.OperatorParameter.ActualName = "Evaluator";

      weightedParentsQualityComparator.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
      weightedParentsQualityComparator.LeftSideParameter.ActualName = QualityParameter.Name;
      weightedParentsQualityComparator.MaximizationParameter.ActualName = MaximizationParameter.Name;
      weightedParentsQualityComparator.RightSideParameter.ActualName = QualityParameter.Name;
      weightedParentsQualityComparator.ResultParameter.ActualName = "SuccessfulOffspring";

      subScopesRemover.RemoveAllSubScopes = true;

      intCounter1.Name = "Increment NumberOfCreatedOffspring";
      intCounter1.ValueParameter.ActualName = "NumberOfCreatedOffspring";
      intCounter1.Increment = null;
      intCounter1.IncrementParameter.ActualName = BatchSizeParameter.Name;

      intCounter2.Name = "Increment EvaluatedSolutions";
      intCounter2.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
      intCounter2.Increment = null;
      intCounter2.IncrementParameter.ActualName = BatchSizeParameter.Name;

      conditionalSelector.ConditionParameter.ActualName = "SuccessfulOffspring";
      conditionalSelector.ConditionParameter.Depth = 1;
      conditionalSelector.CopySelected.Value = false;

      duplicateSelector.CopySelected.Value = false;

      progressiveOffspringSelector.OffspringListParameter.ActualName = "OffspringList";
      progressiveOffspringSelector.ElitesParameter.ActualName = ElitesParameter.Name;
      progressiveOffspringSelector.MaximumPopulationSizeParameter.ActualName = MaximumPopulationSizeParameter.Name;

      subScopesCounter2.Name = "Count Successful Offspring";
      subScopesCounter2.ValueParameter.ActualName = "NumberOfSuccessfulOffspring";

      calculator1.Name = "NumberOfSuccessfulOffspring == MaximumPopulationSize - Elites";
      calculator1.CollectedValues.Add(new ValueLookupParameter<IntValue>("NumberOfSuccessfulOffspring"));
      calculator1.CollectedValues.Add(new ValueLookupParameter<IntValue>("MaximumPopulationSize"));
      calculator1.CollectedValues.Add(new ValueLookupParameter<IntValue>("Elites"));
      calculator1.ExpressionParameter.Value = new StringValue("NumberOfSuccessfulOffspring MaximumPopulationSize Elites - ==");
      calculator1.ExpressionResultParameter.ActualName = "Break";

      conditionalBranch1.Name = "Break?";
      conditionalBranch1.ConditionParameter.ActualName = "Break";

      comparator1.Name = "NumberOfCreatedOffspring >= Effort";
      comparator1.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      comparator1.LeftSideParameter.ActualName = "NumberOfCreatedOffspring";
      comparator1.RightSideParameter.ActualName = EffortParameter.Name;
      comparator1.ResultParameter.ActualName = "Break";

      conditionalBranch2.Name = "Break?";
      conditionalBranch2.ConditionParameter.ActualName = "Break";

      bestSelector.CopySelected = new BoolValue(false);
      bestSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
      bestSelector.NumberOfSelectedSubScopesParameter.ActualName = "Elites";
      bestSelector.QualityParameter.ActualName = QualityParameter.Name;

      intCounter3.Name = "Increment Generations";
      intCounter3.Increment = new IntValue(1);
      intCounter3.ValueParameter.ActualName = "Generations";

      subScopesCounter3.Name = "Update CurrentPopulationSize";
      subScopesCounter3.ValueParameter.ActualName = "CurrentPopulationSize";
      subScopesCounter3.AccumulateParameter.Value = new BoolValue(false);

      calculator2.Name = "Evaluate ActualSelectionPressure";
      calculator2.CollectedValues.Add(new ValueLookupParameter<IntValue>("NumberOfCreatedOffspring"));
      calculator2.CollectedValues.Add(new ValueLookupParameter<IntValue>("Elites"));
      calculator2.CollectedValues.Add(new ValueLookupParameter<IntValue>("CurrentPopulationSize"));
      calculator2.ExpressionParameter.Value = new StringValue("NumberOfCreatedOffspring Elites + CurrentPopulationSize /");
      calculator2.ExpressionResultParameter.ActualName = "ActualSelectionPressure";

      comparator2.Name = "CurrentPopulationSize < 1";
      comparator2.Comparison = new Comparison(ComparisonType.Less);
      comparator2.LeftSideParameter.ActualName = "CurrentPopulationSize";
      comparator2.RightSideParameter.Value = new IntValue(1);
      comparator2.ResultParameter.ActualName = "Terminate";

      conditionalBranch3.Name = "Terminate?";
      conditionalBranch3.ConditionParameter.ActualName = "Terminate";

      analyzer2.Name = "Analyzer";
      analyzer2.OperatorParameter.ActualName = "Analyzer";

      comparator3.Name = "Generations >= MaximumGenerations";
      comparator3.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
      comparator3.LeftSideParameter.ActualName = "Generations";
      comparator3.ResultParameter.ActualName = "Terminate";
      comparator3.RightSideParameter.ActualName = MaximumGenerationsParameter.Name;

      conditionalBranch4.Name = "Terminate?";
      conditionalBranch4.ConditionParameter.ActualName = "Terminate";

      comparator4.Name = "CurrentPopulationSize < MinimumPopulationSize";
      comparator4.Comparison = new Comparison(ComparisonType.Less);
      comparator4.LeftSideParameter.ActualName = "CurrentPopulationSize";
      comparator4.RightSideParameter.ActualName = MinimumPopulationSizeParameter.Name;
      comparator4.ResultParameter.ActualName = "Terminate";

      conditionalBranch5.Name = "Terminate?";
      conditionalBranch5.ConditionParameter.ActualName = "Terminate";

      assigner3.Name = "Reset NumberOfCreatedOffspring";
      assigner3.LeftSideParameter.ActualName = "NumberOfCreatedOffspring";
      assigner3.RightSideParameter.Value = new IntValue(0);

      assigner4.Name = "Reset NumberOfSuccessfulOffspring";
      assigner4.LeftSideParameter.ActualName = "NumberOfSuccessfulOffspring";
      assigner4.RightSideParameter.Value = new IntValue(0);

      assigner5.Name = "Reset OffspringList";
      assigner5.LeftSideParameter.ActualName = "OffspringList";
      assigner5.RightSideParameter.Value = new ScopeList();

      reevaluateElitesBranch.ConditionParameter.ActualName = "ReevaluateElites";
      reevaluateElitesBranch.Name = "Reevaluate elites ?";

      uniformSubScopesProcessor2.Parallel.Value = true;

      evaluator2.Name = "Evaluator (placeholder)";
      evaluator2.OperatorParameter.ActualName = EvaluatorParameter.Name;

      subScopesCounter4.Name = "Increment EvaluatedSolutions";
      subScopesCounter4.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
      #endregion

      #region Create operator graph
      OperatorGraph.InitialOperator = variableCreator;
      variableCreator.Successor = assigner1;
      assigner1.Successor = resultsCollector;
      resultsCollector.Successor = analyzer1;
      analyzer1.Successor = selector;
      selector.Successor = subScopesProcessor1;
      subScopesProcessor1.Operators.Add(new EmptyOperator());
      subScopesProcessor1.Operators.Add(childrenCreator);
      subScopesProcessor1.Successor = calculator1;
      childrenCreator.Successor = uniformSubScopesProcessor;
      uniformSubScopesProcessor.Operator = crossover;
      uniformSubScopesProcessor.Successor = intCounter1;
      crossover.Successor = stochasticBranch;
      stochasticBranch.FirstBranch = mutator;
      stochasticBranch.SecondBranch = null;
      mutator.Successor = null;
      stochasticBranch.Successor = evaluator;
      evaluator.Successor = weightedParentsQualityComparator;
      weightedParentsQualityComparator.Successor = subScopesRemover;
      intCounter1.Successor = intCounter2;
      intCounter2.Successor = conditionalSelector;
      conditionalSelector.Successor = rightReducer1;
      rightReducer1.Successor = duplicateSelector;
      duplicateSelector.Successor = leftReducer1;
      leftReducer1.Successor = progressiveOffspringSelector;
      progressiveOffspringSelector.Successor = subScopesCounter2;
      calculator1.Successor = conditionalBranch1;
      conditionalBranch1.FalseBranch = comparator1;
      conditionalBranch1.TrueBranch = subScopesProcessor2;
      comparator1.Successor = conditionalBranch2;
      conditionalBranch2.FalseBranch = leftReducer2;
      conditionalBranch2.TrueBranch = subScopesProcessor2;
      leftReducer2.Successor = selector;
      subScopesProcessor2.Operators.Add(bestSelector);
      subScopesProcessor2.Operators.Add(scopeCleaner);
      subScopesProcessor2.Successor = mergingReducer;
      bestSelector.Successor = rightReducer2;
      rightReducer2.Successor = reevaluateElitesBranch;
      reevaluateElitesBranch.TrueBranch = uniformSubScopesProcessor2;
      uniformSubScopesProcessor2.Operator = evaluator2;
      uniformSubScopesProcessor2.Successor = subScopesCounter4;
      evaluator2.Successor = null;
      subScopesCounter4.Successor = null;
      reevaluateElitesBranch.FalseBranch = null;
      reevaluateElitesBranch.Successor = null;
      scopeCleaner.Successor = scopeRestorer;
      mergingReducer.Successor = intCounter3;
      intCounter3.Successor = subScopesCounter3;
      subScopesCounter3.Successor = calculator2;
      calculator2.Successor = comparator2;
      comparator2.Successor = conditionalBranch3;
      conditionalBranch3.FalseBranch = analyzer2;
      conditionalBranch3.TrueBranch = null;
      analyzer2.Successor = comparator3;
      comparator3.Successor = conditionalBranch4;
      conditionalBranch4.FalseBranch = comparator4;
      conditionalBranch4.TrueBranch = null;
      conditionalBranch4.Successor = null;
      comparator4.Successor = conditionalBranch5;
      conditionalBranch5.FalseBranch = assigner3;
      conditionalBranch5.TrueBranch = null;
      conditionalBranch5.Successor = null;
      assigner3.Successor = assigner4;
      assigner4.Successor = assigner5;
      assigner5.Successor = selector;

      #endregion
    }
    public AlpsGeneticAlgorithmMainOperator()
      : base() {
      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));

      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
      Parameters.Add(new ValueLookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated."));
      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));

      Parameters.Add(new ValueLookupParameter<IntValue>("PopulationSize", "The size of the population of solutions in each layer."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
      Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
      Parameters.Add(new ValueLookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
      Parameters.Add(new ValueLookupParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation."));
      Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
      Parameters.Add(new ValueLookupParameter<BoolValue>("PlusSelection", "Include the parents in the selection of the invividuals for the next generation."));

      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Age", "The age of individuals."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("AgeInheritance", "A weight that determines the age of a child after crossover based on the older (1.0) and younger (0.0) parent."));
      Parameters.Add(new ValueLookupParameter<DoubleValue>("AgeIncrement", "The value the age the individuals is incremented if they survives a generation."));


      var numberOfSelectedParentsCalculator = new ExpressionCalculator() { Name = "NumberOfSelectedParents = 2 * (PopulationSize - (PlusSelection ? 0 : Elites))" };
      var selector = new Placeholder() { Name = "Selector (Placeholder)" };
      var subScopesProcessor1 = new SubScopesProcessor();
      var childrenCreator = new ChildrenCreator();
      var uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
      var crossover = new Placeholder() { Name = "Crossover (Placeholder)" };
      var stochasticBranch = new StochasticBranch() { Name = "MutationProbability" };
      var mutator = new Placeholder() { Name = "Mutator (Placeholder)" };
      var ageCalculator = new WeightingReducer() { Name = "Calculate Age" };
      var subScopesRemover = new SubScopesRemover();
      var uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
      var evaluator = new Placeholder() { Name = "Evaluator (Placeholder)" };
      var subScopesCounter = new SubScopesCounter() { Name = "Increment EvaluatedSolutions" };
      var replacementBranch = new ConditionalBranch() { Name = "PlusSelection?" };
      var replacementMergingReducer = new MergingReducer();
      var replacementBestSelector = new BestSelector();
      var replacementRightReducer = new RightReducer();
      var subScopesProcessor2 = new SubScopesProcessor();
      var bestSelector = new BestSelector();
      var rightReducer = new RightReducer();
      var mergingReducer = new MergingReducer();
      var reevaluateElitesBranch = new ConditionalBranch() { Name = "Reevaluate elites ?" };
      var incrementAgeProcessor = new UniformSubScopesProcessor();
      var ageIncrementor = new DoubleCounter() { Name = "Increment Age" };

      OperatorGraph.InitialOperator = numberOfSelectedParentsCalculator;

      numberOfSelectedParentsCalculator.CollectedValues.Add(new LookupParameter<IntValue>(PopulationSizeParameter.Name));
      numberOfSelectedParentsCalculator.CollectedValues.Add(new LookupParameter<IntValue>(ElitesParameter.Name));
      numberOfSelectedParentsCalculator.CollectedValues.Add(new LookupParameter<BoolValue>(PlusSelectionParameter.Name));
      numberOfSelectedParentsCalculator.ExpressionResultParameter.ActualName = "NumberOfSelectedSubScopes";
      numberOfSelectedParentsCalculator.ExpressionParameter.Value = new StringValue("PopulationSize 0 Elites PlusSelection if - 2 * toint");
      numberOfSelectedParentsCalculator.Successor = selector;

      selector.OperatorParameter.ActualName = SelectorParameter.Name;
      selector.Successor = subScopesProcessor1;

      subScopesProcessor1.Operators.Add(new EmptyOperator());
      subScopesProcessor1.Operators.Add(childrenCreator);
      subScopesProcessor1.Successor = replacementBranch;

      childrenCreator.ParentsPerChild = new IntValue(2);
      childrenCreator.Successor = uniformSubScopesProcessor1;

      uniformSubScopesProcessor1.Operator = crossover;
      uniformSubScopesProcessor1.Successor = uniformSubScopesProcessor2;

      crossover.OperatorParameter.ActualName = CrossoverParameter.Name;
      crossover.Successor = stochasticBranch;

      stochasticBranch.ProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
      stochasticBranch.RandomParameter.ActualName = RandomParameter.Name;
      stochasticBranch.FirstBranch = mutator;
      stochasticBranch.SecondBranch = null;
      stochasticBranch.Successor = ageCalculator;

      mutator.OperatorParameter.ActualName = MutatorParameter.Name;
      mutator.Successor = null;

      ageCalculator.ParameterToReduce.ActualName = AgeParameter.Name;
      ageCalculator.TargetParameter.ActualName = AgeParameter.Name;
      ageCalculator.WeightParameter.ActualName = AgeInheritanceParameter.Name;
      ageCalculator.Successor = subScopesRemover;

      subScopesRemover.RemoveAllSubScopes = true;
      subScopesRemover.Successor = null;

      uniformSubScopesProcessor2.Parallel.Value = true;
      uniformSubScopesProcessor2.Operator = evaluator;
      uniformSubScopesProcessor2.Successor = subScopesCounter;

      evaluator.OperatorParameter.ActualName = EvaluatorParameter.Name;
      evaluator.Successor = null;

      subScopesCounter.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
      subScopesCounter.AccumulateParameter.Value = new BoolValue(true);
      subScopesCounter.Successor = null;

      replacementBranch.ConditionParameter.ActualName = PlusSelectionParameter.Name;
      replacementBranch.TrueBranch = replacementMergingReducer;
      replacementBranch.FalseBranch = subScopesProcessor2;
      replacementBranch.Successor = incrementAgeProcessor;

      replacementMergingReducer.Successor = replacementBestSelector;

      replacementBestSelector.NumberOfSelectedSubScopesParameter.ActualName = PopulationSizeParameter.Name;
      replacementBestSelector.CopySelected = new BoolValue(false);
      replacementBestSelector.Successor = replacementRightReducer;

      replacementRightReducer.Successor = reevaluateElitesBranch;

      subScopesProcessor2.Operators.Add(bestSelector);
      subScopesProcessor2.Operators.Add(new EmptyOperator());
      subScopesProcessor2.Successor = mergingReducer;

      bestSelector.CopySelected = new BoolValue(false);
      bestSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
      bestSelector.NumberOfSelectedSubScopesParameter.ActualName = ElitesParameter.Name;
      bestSelector.QualityParameter.ActualName = QualityParameter.Name;
      bestSelector.Successor = rightReducer;

      rightReducer.Successor = reevaluateElitesBranch;

      mergingReducer.Successor = null;

      reevaluateElitesBranch.ConditionParameter.ActualName = ReevaluateElitesParameter.Name;
      reevaluateElitesBranch.TrueBranch = uniformSubScopesProcessor2;
      reevaluateElitesBranch.FalseBranch = null;
      reevaluateElitesBranch.Successor = null;


      incrementAgeProcessor.Operator = ageIncrementor;
      incrementAgeProcessor.Successor = null;

      ageIncrementor.ValueParameter.ActualName = AgeParameter.Name;
      ageIncrementor.IncrementParameter.Value = null;
      ageIncrementor.IncrementParameter.ActualName = AgeIncrementParameter.Name;
      ageIncrementor.Successor = null;
    }