private void buttonClassify_Click(object sender, EventArgs e) { if (textBoxPath.Text != null) { ReadData.readUserData(textBoxPath.Text, Convert.ToInt32(outputNumText.Text), Convert.ToDouble(textBoxLearningRate.Text)); MessageBox.Show("Data has been compressed in 'Compressed User images.txt'\n PCA weights has also been stored in PCA User weights in release folder. "); } }
private void buttonClassify_Click(object sender, EventArgs e) { if (image != null) { Neural_Network pretrainedNN = new Neural_Network(); image = new Bitmap(image, 50, 50); double[,] input = ImageProcessing.imageToGrayscale(image); ReadData.normalizeImage(ref input); PCA pca = new PCA(); pca.readPretrainedWeights(); input = Utilities.addBias(pca.compress(input)); textBoxClassification.Text = pretrainedNN.classify(input); } else { MessageBox.Show("Enter picture first"); } }
private void buttonTrain_Click(object sender, EventArgs e) { if (radioButtonAll.Checked) { ReadData.readCompressedData(); } else { ReadData.readSmallCompressedData(); } RadialBasisNet RB = new RadialBasisNet(); Tuple <double, double[, ]> t = RB.train(Convert.ToInt32(textBoxLayers.Text), Convert.ToInt32(textBoxNum_Iteraions.Text), Convert.ToDouble(textBoxEta.Text)); ConfusionMatrix CM = new ConfusionMatrix(); CM.fillMatrix(t.Item2); textBoxAccuracy.Text = t.Item1.ToString() + '%'; CM.Show(); }