private void buttonTrain_Click(object sender, EventArgs e) { if (radioButtonAll.Checked) { ReadData.readCompressedData(); } else { ReadData.readSmallCompressedData(); } RadialBasisNet RB = new RadialBasisNet(); char[] delimiterChars = { ' ' }; string[] words = textBoxLayers.Text.Split(delimiterChars); List <int> layersList = new List <int>(); layersList.Add(256); for (int i = 0; i < words.Length; i++) { if (words[i] != "") { layersList.Add(Convert.ToInt32(words[i])); } } layersList.Add(3); int[] layers = layersList.ToArray(); Neural_Network NN = new Neural_Network(); Tuple <double, double[, ]> t = NN.train(layers, Convert.ToInt32(textBoxNum_Iteraions.Text), Convert.ToDouble(textBoxEta.Text)); ConfusionMatrix CM = new ConfusionMatrix(); CM.fillMatrix(t.Item2); textBoxAccuracy.Text = t.Item1.ToString() + '%'; CM.Show(); }
private void buttonClassify_Click(object sender, EventArgs e) { if (image != null) { Neural_Network pretrainedNN = new Neural_Network(); image = new Bitmap(image, 50, 50); double[,] input = ImageProcessing.imageToGrayscale(image); ReadData.normalizeImage(ref input); PCA pca = new PCA(); pca.readPretrainedWeights(); input = Utilities.addBias(pca.compress(input)); textBoxClassification.Text = pretrainedNN.classify(input); } else { MessageBox.Show("Enter picture first"); } }