/// <summary> /// Reindex the 24/32 BPP (A)RGB image to a 8BPP /// </summary> /// <returns>Bitmap</returns> public Bitmap SimpleReindex() { List <Color> colors = new List <Color>(); Dictionary <Color, byte> lookup = new Dictionary <Color, byte>(); using (FastChunkyBitmap bbbDest = FastBitmap.Create(resultBitmap) as FastChunkyBitmap) { bbbDest.Lock(); using (IFastBitmap bbbSrc = FastBitmap.Create(sourceBitmap)) { IFastBitmapWithBlend bbbSrcBlend = bbbSrc as IFastBitmapWithBlend; bbbSrc.Lock(); byte index; for (int y = 0; y < bbbSrc.Height; y++) { for (int x = 0; x < bbbSrc.Width; x++) { Color color; if (bbbSrcBlend != null) { color = bbbSrcBlend.GetBlendedColorAt(x, y); } else { color = bbbSrc.GetColorAt(x, y); } if (lookup.ContainsKey(color)) { index = lookup[color]; } else { colors.Add(color); index = (byte)(colors.Count - 1); lookup.Add(color, index); } bbbDest.SetColorIndexAt(x, y, index); } } } } // generates palette ColorPalette imagePalette = resultBitmap.Palette; Color[] entries = imagePalette.Entries; for (Int32 paletteIndex = 0; paletteIndex < 256; paletteIndex++) { if (paletteIndex < colorCount) { entries[paletteIndex] = colors[paletteIndex]; } else { entries[paletteIndex] = Color.Black; } } resultBitmap.Palette = imagePalette; // Make sure the bitmap is not disposed, as we return it. Bitmap tmpBitmap = resultBitmap; resultBitmap = null; return(tmpBitmap); }
/// <summary> /// Get the image /// </summary> public Bitmap GetQuantizedImage(int allowedColorCount) { if (allowedColorCount > 256) { throw new ArgumentOutOfRangeException("Quantizing muss be done to get less than 256 colors"); } if (colorCount < allowedColorCount) { // Simple logic to reduce to 8 bit LOG.Info("Colors in the image are already less as whished for, using simple copy to indexed image, no quantizing needed!"); return(SimpleReindex()); } // preprocess the colors CalculateMoments(); LOG.Info("Calculated the moments..."); Int32 next = 0; Single[] volumeVariance = new Single[MAXCOLOR]; // processes the cubes for (Int32 cubeIndex = 1; cubeIndex < allowedColorCount; ++cubeIndex) { // if cut is possible; make it if (Cut(cubes[next], cubes[cubeIndex])) { volumeVariance[next] = cubes[next].Volume > 1 ? CalculateVariance(cubes[next]) : 0.0f; volumeVariance[cubeIndex] = cubes[cubeIndex].Volume > 1 ? CalculateVariance(cubes[cubeIndex]) : 0.0f; } else { // the cut was not possible, revert the index volumeVariance[next] = 0.0f; cubeIndex--; } next = 0; Single temp = volumeVariance[0]; for (Int32 index = 1; index <= cubeIndex; ++index) { if (volumeVariance[index] > temp) { temp = volumeVariance[index]; next = index; } } if (temp <= 0.0) { allowedColorCount = cubeIndex + 1; break; } } Int32[] lookupRed = new Int32[MAXCOLOR]; Int32[] lookupGreen = new Int32[MAXCOLOR]; Int32[] lookupBlue = new Int32[MAXCOLOR]; tag = new byte[MAXVOLUME]; // precalculates lookup tables for (int k = 0; k < allowedColorCount; ++k) { Mark(cubes[k], k, tag); long weight = Volume(cubes[k], weights); if (weight > 0) { lookupRed[k] = (int)(Volume(cubes[k], momentsRed) / weight); lookupGreen[k] = (int)(Volume(cubes[k], momentsGreen) / weight); lookupBlue[k] = (int)(Volume(cubes[k], momentsBlue) / weight); } else { lookupRed[k] = 0; lookupGreen[k] = 0; lookupBlue[k] = 0; } } reds = new Int32[allowedColorCount + 1]; greens = new Int32[allowedColorCount + 1]; blues = new Int32[allowedColorCount + 1]; sums = new Int32[allowedColorCount + 1]; LOG.Info("Starting bitmap reconstruction..."); using (FastChunkyBitmap dest = FastBitmap.Create(resultBitmap) as FastChunkyBitmap) { using (IFastBitmap src = FastBitmap.Create(sourceBitmap)) { IFastBitmapWithBlend srcBlend = src as IFastBitmapWithBlend; Dictionary <Color, byte> lookup = new Dictionary <Color, byte>(); byte bestMatch; for (int y = 0; y < src.Height; y++) { for (int x = 0; x < src.Width; x++) { Color color; if (srcBlend != null) { // WithoutAlpha, this makes it possible to ignore the alpha color = srcBlend.GetBlendedColorAt(x, y); } else { color = src.GetColorAt(x, y); } // Check if we already matched the color if (!lookup.ContainsKey(color)) { // If not we need to find the best match // First get initial match bestMatch = dest.GetColorIndexAt(x, y); bestMatch = tag[bestMatch]; Int32 bestDistance = 100000000; for (int lookupIndex = 0; lookupIndex < allowedColorCount; lookupIndex++) { Int32 foundRed = lookupRed[lookupIndex]; Int32 foundGreen = lookupGreen[lookupIndex]; Int32 foundBlue = lookupBlue[lookupIndex]; Int32 deltaRed = color.R - foundRed; Int32 deltaGreen = color.G - foundGreen; Int32 deltaBlue = color.B - foundBlue; Int32 distance = deltaRed * deltaRed + deltaGreen * deltaGreen + deltaBlue * deltaBlue; if (distance < bestDistance) { bestDistance = distance; bestMatch = (byte)lookupIndex; } } lookup.Add(color, bestMatch); } else { // Already matched, so we just use the lookup bestMatch = lookup[color]; } reds[bestMatch] += color.R; greens[bestMatch] += color.G; blues[bestMatch] += color.B; sums[bestMatch]++; dest.SetColorIndexAt(x, y, bestMatch); } } } } // generates palette ColorPalette imagePalette = resultBitmap.Palette; Color[] entries = imagePalette.Entries; for (Int32 paletteIndex = 0; paletteIndex < allowedColorCount; paletteIndex++) { if (sums[paletteIndex] > 0) { reds[paletteIndex] /= sums[paletteIndex]; greens[paletteIndex] /= sums[paletteIndex]; blues[paletteIndex] /= sums[paletteIndex]; } entries[paletteIndex] = Color.FromArgb(255, reds[paletteIndex], greens[paletteIndex], blues[paletteIndex]); } resultBitmap.Palette = imagePalette; // Make sure the bitmap is not disposed, as we return it. Bitmap tmpBitmap = resultBitmap; resultBitmap = null; return(tmpBitmap); }
/// <summary> /// See <see cref="IColorQuantizer.Prepare"/> for more details. /// </summary> public WuQuantizer(Bitmap sourceBitmap) { this.sourceBitmap = sourceBitmap; // Make sure the color count variables are reset BitArray bitArray = new BitArray((int)Math.Pow(2, 24)); colorCount = 0; // creates all the cubes cubes = new WuColorCube[MAXCOLOR]; // initializes all the cubes for (Int32 cubeIndex = 0; cubeIndex < MAXCOLOR; cubeIndex++) { cubes[cubeIndex] = new WuColorCube(); } // resets the reference minimums cubes[0].RedMinimum = 0; cubes[0].GreenMinimum = 0; cubes[0].BlueMinimum = 0; // resets the reference maximums cubes[0].RedMaximum = MAXSIDEINDEX; cubes[0].GreenMaximum = MAXSIDEINDEX; cubes[0].BlueMaximum = MAXSIDEINDEX; weights = new Int64[SIDESIZE, SIDESIZE, SIDESIZE]; momentsRed = new Int64[SIDESIZE, SIDESIZE, SIDESIZE]; momentsGreen = new Int64[SIDESIZE, SIDESIZE, SIDESIZE]; momentsBlue = new Int64[SIDESIZE, SIDESIZE, SIDESIZE]; moments = new Single[SIDESIZE, SIDESIZE, SIDESIZE]; Int32[] table = new Int32[256]; for (Int32 tableIndex = 0; tableIndex < 256; ++tableIndex) { table[tableIndex] = tableIndex * tableIndex; } // Use a bitmap to store the initial match, which is just as good as an array and saves us 2x the storage using (IFastBitmap sourceFastBitmap = FastBitmap.Create(sourceBitmap)) { IFastBitmapWithBlend sourceFastBitmapWithBlend = sourceFastBitmap as IFastBitmapWithBlend; sourceFastBitmap.Lock(); using (FastChunkyBitmap destinationFastBitmap = FastBitmap.CreateEmpty(sourceBitmap.Size, PixelFormat.Format8bppIndexed, Color.White) as FastChunkyBitmap) { destinationFastBitmap.Lock(); for (int y = 0; y < sourceFastBitmap.Height; y++) { for (int x = 0; x < sourceFastBitmap.Width; x++) { Color color; if (sourceFastBitmapWithBlend == null) { color = sourceFastBitmap.GetColorAt(x, y); } else { color = sourceFastBitmapWithBlend.GetBlendedColorAt(x, y); } // To count the colors int index = color.ToArgb() & 0x00ffffff; // Check if we already have this color if (!bitArray.Get(index)) { // If not, add 1 to the single colors colorCount++; bitArray.Set(index, true); } Int32 indexRed = (color.R >> 3) + 1; Int32 indexGreen = (color.G >> 3) + 1; Int32 indexBlue = (color.B >> 3) + 1; weights[indexRed, indexGreen, indexBlue]++; momentsRed[indexRed, indexGreen, indexBlue] += color.R; momentsGreen[indexRed, indexGreen, indexBlue] += color.G; momentsBlue[indexRed, indexGreen, indexBlue] += color.B; moments[indexRed, indexGreen, indexBlue] += table[color.R] + table[color.G] + table[color.B]; // Store the initial "match" Int32 paletteIndex = (indexRed << 10) + (indexRed << 6) + indexRed + (indexGreen << 5) + indexGreen + indexBlue; destinationFastBitmap.SetColorIndexAt(x, y, (byte)(paletteIndex & 0xff)); } } resultBitmap = destinationFastBitmap.UnlockAndReturnBitmap(); } } }