public void TornamentTest()
        {
            var minGenes = 10;
            var maxGenes = 20;
            var geneset  = CreateGeneSet();
            var watch    = Stopwatch.StartNew();

            void FnDisplay(List <Rule> genes, int wins, int ties, int losses, int generation)
            {
                Console.WriteLine("-- generation {0} --", generation);
                Display(
                    new Chromosome <Rule, Fitness>(genes, new Fitness(wins, ties, losses, genes.Count), Strategy.None),
                    watch);
            }

            var mutationRoundCounts = new List <int> {
                1
            };

            var mutationOperators = new FnMutateDelegate[]
            {
                genes => MutateAdd(genes, geneset),
                genes => MutateReplace(genes, geneset),
                MutateRemove,
                MutateSwapAdjacent,
                MutateMove,
            };

            void FnMutate(List <Rule> genes) =>
            Mutate(genes, x => new Fitness(0, 0, 0, 0), mutationOperators, mutationRoundCounts);

            List <Rule> FnCrossover(IReadOnlyList <Rule> parent, IReadOnlyList <Rule> doner)
            {
                var child = parent.Take(parent.Count / 2).Concat(doner.Skip(doner.Count / 2)).ToList();

                FnMutate(child);
                return(child);
            }

            List <Rule> FnCreate() =>
            Rand.RandomSample(geneset, Rand.Random.Next(minGenes, maxGenes));

            int FnSortKey(List <Rule> genes, int wins, int ties, int losses) => - 1000 * losses - ties + 1 / genes.Count;

            var unused =
                Genetic <Rule, Fitness> .Tournament(FnCreate, FnCrossover, PlayOneOnOne, FnDisplay, FnSortKey, 13);
        }
        public void PerfectKnowledgeTest()
        {
            var minGenes = 10;
            var maxGenes = 20;
            var geneset  = CreateGeneSet();
            var watch    = Stopwatch.StartNew();

            void FnDisplay(Chromosome <Rule, Fitness> candidate, int?length) =>
            Display(candidate, watch);

            Fitness FnGetFitness(IReadOnlyList <Rule> genes) =>
            GetFitness(genes);

            var mutationRoundCounts = new List <int> {
                1
            };

            var mutationOperators = new FnMutateDelegate[]
            {
                genes => MutateAdd(genes, geneset),
                genes => MutateReplace(genes, geneset),
                MutateRemove,
                MutateSwapAdjacent,
                MutateMove,
            };

            void FnMutate(List <Rule> genes) =>
            Mutate(genes, FnGetFitness, mutationOperators, mutationRoundCounts);

            List <Rule> FnCrossover(IReadOnlyList <Rule> parent, IReadOnlyList <Rule> doner)
            {
                var child = parent.Take(parent.Count / 2).Concat(doner.Skip(doner.Count / 2)).ToList();

                FnMutate(child);
                return(child);
            }

            List <Rule> FnCreate() =>
            Rand.RandomSample(geneset, Rand.Random.Next(minGenes, maxGenes));

            var optimalFitness = new Fitness(620, 120, 0, 11);

            var best = Genetic <Rule, Fitness> .GetBest(FnGetFitness, minGenes, optimalFitness, null, FnDisplay, FnMutate,
                                                        FnCreate, 500, 20, FnCrossover);

            Assert.IsTrue(optimalFitness.CompareTo(best.Fitness) <= 0);
        }