public void runGeneration() { int i, j; float f, maxf = 0; float[] vars; for (i = 0; i < population.Length; i++) { fitnessParams[i] = new FitnessParameter(population[i].DNA); } Stopwatch calculationTime = new Stopwatch(); calculationTime.Start(); if (!runInParallelGpu) { fitnesses = calculatePopulationFitness(); } else { fitnesses = calculatePopulationFitnessGPU(); } calculationTime.Stop(); for (i = 0; i < population.Length; i++) { population[i].fitness = fitnesses[i]; } maxFitness = fitnesses.Max(); minFitness = fitnesses.Min(); for (i = 0; i < population.Length; i++) { if (fitnesses[i] == maxFitness) { bestIndex = i; break; } } bestIndividual = population[bestIndex]; // clone(); return; }
public void runGeneration() { int i, j; float f, maxf = 0; float[] vars; for (i = 0; i < population.Length; i++) { fitnessParams[i] = new FitnessParameter(population[i].DNA); } Stopwatch calculationTime = new Stopwatch(); calculationTime.Start(); calculatePopulationFitnessParallel(); calculationTime.Stop(); for (i = 0; i < population.Length; i++) { population[i].fitness = fitnesses[i]; } maxFitness = -float.PositiveInfinity; for (i = 0; i < population.Length; i++) { if (fitnesses[i] > maxFitness) { bestIndex = i; maxFitness = fitnesses[i]; } } bestIndividual = population[bestIndex]; // clone(); return; }
public static float fitness(float[,] groundTruth, float[] userTrusts, UserUpdate[,,] updates, FitnessParameter fitnessParams) { return(Experiment.execute(groundTruth, userTrusts, updates, fitnessParams)); }
public static unsafe float execute(float[,] GroundTruth, float[] UserTrusts, UserUpdate[, ,] Updates, FitnessParameter fitnessParam) { SimOptions options = new SimOptions(1, fitnessParam.var1, fitnessParam.var2, fitnessParam.var3, fitnessParam.var4, fitnessParam.var5); float iterationOccupancy; float[] trusts; float[] validity; float FinalX; float ParkingCondition; float cso; float certainty; float C; int iterationsPerHour; int totalHoursOfUpdates = 0; float sectionOccupancy; int user_id; int update_id; float user_tag; // here we have the research data, now we should proceed on fusing all these updates // at first we need to initialize some elements //float* predictedSectionOccupancy = fitnessParam.predictedSectionOccupancy; //float* predictedUsersTrust = fitnessParam.predictedUsersTrust; //float* predictedUsersScore = fitnessParam.predictedUsersScore; int nSections = GroundTruth.GetLength(0); int nUsers = UserTrusts.Length; int nIterations = Updates.GetLength(1); //for (int u = 0; u < nUsers; u++) // predictedUsersTrust[u] = (float)0.5; //float[,] predictedIterationOccupancy = new float[nSections,nIterations]; //float[] lastUpdateTime = new float[nSections]; //float[] currentSectionOccupancy = new float[nSections]; //for (int s = 0; s < nSections; s++) //{ // lastUpdateTime[s] = 0; // currentSectionOccupancy[s] = (float)options.I; //} //bool[] processed = new bool[10000000]; //for (int s = 0; s < processed.Length; s++) // processed[s] = false; //float currentTime; //float interval = 5; //for (int section = 0; section < nSections; section++) //{ // currentTime = 7680; // for (int iteration = 0; iteration < nIterations; iteration++) // { // iterationOccupancy = (float)options.I; // currentTime += interval; // UserUpdate[] updates = new UserUpdate[Updates.GetLength(2)]; // int nUpdates = 0; // for (int tempCounter = 0; tempCounter < updates.Length; tempCounter++) // if(Updates[section, iteration, tempCounter].section > 0) // updates[nUpdates++] = Updates[section, iteration, tempCounter]; // if (nUpdates == 0) // { // } // else // { // ///////////// get trust of Users // //T = [tags(:).trust]; // trusts = new float[nUpdates]; // for (int i = 0; i < nUpdates; i++) // { // user_id = updates[i].user_id - 1; // trusts[i] = predictedUsersTrust[user_id]; // } // ////////////////////////////////////// make validity vector // //n = length(T); // //validity = zeros(1,n); // //for i=n:-1:1 // // validity(i)=T(i); // // for j=i+1:n // // validity(i) = validity(i) * (1 - T(j)); // // end // //end // validity = new float[nUpdates]; // for (int i = nUpdates - 1; i >= 0; i--) // { // validity[i] = trusts[i]; // for (int j = i + 1; j < nUpdates; j++) // validity[i] *= 1 - trusts[j]; // } // ///////////// fuse based on validity // //FinalX = 0; // //for j=1:length(validity) // // X = X_influence(tags(j),currentTime,I); // // FinalX = FinalX + validity(j)*X; // //end // //newSectionOccupancy = I + FinalX; % real between 1 and 5 // //lastUpdateTimes(section) = currentTime; // FinalX = 0; // for (int i = 0; i < nUpdates; i++) // //FinalX += validity[i] * X_influence(updates[i].tag, updates[i].timestamp, currentTime); // FinalX += validity[i] * (updates[i].tag - options.I) / ((currentTime - updates[i].timestamp) * options.decay + 1); // lastUpdateTime[section] = (float)updates[updates.Length - 1].timestamp; // iterationOccupancy = (float)options.I + FinalX; // /////////////////// update peoples trust // //ParkingCondition = ceil((currentSectionOccupancy-1)/4 * 5); // //if ParkingCondition == 0, ParkingCondition = 1; end // //if ~isempty(processed) // // for p = find(processed == 0) // // submittedTag = tags(p).value; % r // // certainty = simOptions.certainty_coeff / (currentTime - lastUpdateTime); % coce // // % calculate C // // if ParkingCondition == submittedTag // // C = simOptions.lambda_promote * certainty; // // else // // C = simOptions.lambda_punish * certainty * -abs(ParkingCondition - submittedTag); // // end // // tags(p).score = tags(p).score + C; // // tags(p).trust = (tanh(tags(p).score/simOptions.score_coeff)+1)/2; // // tagid = tags(p).tagID; // // uid = tags(p).userID; // // trust = tags(p).trust; // // score = tags(p).score; // //% rank = floor(trust * 5) + 1; % rank = 1,2,3,4,5 // // predictedTrust(uid) = trust; // // predictedScores(uid) = score; // // uus(tagid,6) = 1; % flag processed // // end // //end // cso = currentSectionOccupancy[section]; // ParkingCondition = (float)Math.Ceiling((iterationOccupancy - 1) / 4 * 5); // {1 2 3 4 5} // if (ParkingCondition == 0) // ParkingCondition = 1; // for (int i = 0; i < nUpdates; i++) // { // update_id = updates[i].update_id - 1; // user_id = updates[i].user_id - 1; // user_tag = updates[i].tag; // if (!processed[update_id]) // { // certainty = options.certainty_coeff / (currentTime - lastUpdateTime[section]); // if (ParkingCondition == user_tag) // C = options.lambda_promote * certainty; // else // C = options.lambda_punish * certainty * -1 * Math.Abs(ParkingCondition - user_tag); // predictedUsersScore[user_id] += C; // predictedUsersTrust[user_id] = (float)(Math.Tanh(predictedUsersScore[user_id] / options.score_coeff) + 1) / 2; // processed[update_id] = true; // } // } // } // predictedIterationOccupancy[section,iteration] = iterationOccupancy; // currentSectionOccupancy[section] = iterationOccupancy; // } // iterationsPerHour = (int)(60 / interval); // totalHoursOfUpdates = (int)((nIterations + 1) / iterationsPerHour); // for (int h = 0; h < totalHoursOfUpdates; h++) // { // sectionOccupancy = 0; // for (int iter = 0; iter < iterationsPerHour; iter++) // { // try // { // iterationOccupancy = predictedIterationOccupancy[section,h * iterationsPerHour + iter]; // } // catch // { // iterationOccupancy = options.I; // } // sectionOccupancy += iterationOccupancy; // } // sectionOccupancy = sectionOccupancy / iterationsPerHour; // sectionOccupancy = (sectionOccupancy - 1) / 4; // predictedSectionOccupancy[section,h] = sectionOccupancy; // } //} //float error1 = 0, error2 = 0, error3 = 0, error4 = 0; //int counter = 0; //Random rnd = new Random(); //// find Performances //PredictionPerformances performance = new PredictionPerformances(); //for (int section = 0; section < nSections; section++) // for (int h = 0; h < totalHoursOfUpdates; h++) // { // counter++; // error1 += (float)(Math.Abs(predictedSectionOccupancy[section,h] - GroundTruth[section,h])); // error2 += (float)(Math.Abs(rnd.NextDouble() - GroundTruth[section,h])); // } //performance.occupancyPerformance = 1 - error1 / counter; //performance.occupancyPerformanceRandom = 1 - error2 / counter; //for (int u = 0; u < nUsers; u++) //{ // error3 += (float)(Math.Abs(predictedUsersTrust[u] - UserTrusts[u])); // error4 += (float)(Math.Abs(rnd.NextDouble() - UserTrusts[u])); //} //performance.trustPerformance = 1 - error3 / nUsers; //performance.trustPerformanceRandom = 1 - error4 / nUsers; //return performance.occupancyPerformance; return((float)-1.1); }
public Fitness(ResearchData researchData, FitnessParameter fitnessParams) { _researchData = researchData; _fitnessParams = fitnessParams; }