void Start() { base.BuildRightLeg(out rightLeg.joints); base.BuildLeftLeg(out leftLeg.joints); //set everything intially to default to avoid any errors that might come rightLeg.SetIKRotation(rightLeg.GetEndEffector().rotation); leftLeg.SetIKRotation(leftLeg.GetEndEffector().rotation); }
/// <summary> /// Prepare the solver and solve the IK problem analytically with specific axis of rotation /// (the chain must contain 2 joints, no more and no less) /// </summary> /// <param name="_hingeChain">the chain</param> /// <param name="_direction">direction of the player</param> /// <param name="_axis">axis of rotation for the 2nd joint (the Hinge joint)</param> public void SolveAnalytically(RootIK.Chain _hingeChain, Vector3 _direction, Vector3 _axis) { if (_hingeChain.joints.Count > 3) { return; } if (_hingeChain.iterations <= 0) { return; } if (_hingeChain.joints.Count <= 0) { return; } //calculate bone length; upperLength = Vector3.Distance(_hingeChain.joints[0].transform.position, _hingeChain.joints[1].transform.position); lowerLength = Vector3.Distance(_hingeChain.joints[1].transform.position, _hingeChain.joints[2].transform.position); systemLength = Vector3.Distance(_hingeChain.joints[0].transform.position, _hingeChain.GetIKPosition()); //lowerjoint 1DOF float _angle = GenericMaths.Formula(upperLength, lowerLength, systemLength) + Mathf.PI * Mathf.Rad2Deg; if (_axis == Vector3.zero) { _axis = Vector3.Cross(RootIK.TransformVector(Vector3.up, _hingeChain.joints[1].transform.rotation), _direction); } else { _axis = Vector3.Cross(RootIK.TransformVector(_axis, _hingeChain.joints[1].transform.rotation), _direction); } Quaternion _src = _hingeChain.joints[1].transform.rotation; Quaternion _t = GenericMaths.QuaternionFromAngleAxis(_axis, _angle + Mathf.Acos(Mathf.Clamp(_src.w, -1f, 1f)) * 10f); Quaternion _finalRot = Quaternion.Lerp(Quaternion.identity, _t, _hingeChain.weight); _hingeChain.joints[1].transform.rotation = GenericMaths.ApplyQuaternion(_finalRot, _src); //Upperjoint 3DOF Vector3 _v1 = _hingeChain.GetIKPosition() - _hingeChain.joints[0].transform.position; Vector3 _v2 = _hingeChain.joints[2].transform.position - _hingeChain.joints[0].transform.position; Quaternion _src2 = _hingeChain.joints[0].transform.rotation; Quaternion _t2 = RootIK.RotateFromTo(_v2, _v1); Quaternion _finalRot2 = Quaternion.Lerp(Quaternion.identity, _t2, _hingeChain.weight); _hingeChain.joints[0].transform.rotation = GenericMaths.ApplyQuaternion(Quaternion.Inverse(_finalRot2), _src2); //foot 6DOF _hingeChain.GetEndEffector().rotation = _hingeChain.GetIKRotation(); }
/// <summary> /// solve the joints backward /// </summary> private void SolveInward() { chain.joints[chain.joints.Count - 1].solvePos = GenericMaths.Interpolate(chain.GetEndEffector().position, chain.GetIKPosition(), chain.weight); for (int i = chain.joints.Count - 2; i >= 0; i--) { Vector3 _v1 = chain.joints[i + 1].solvePos; Vector3 _v0 = chain.joints[i].solvePos - _v1; _v0.Normalize(); _v0 *= Vector3.Distance(chain.joints[i].transform.position, chain.joints[i + 1].transform.position); chain.joints[i].solvePos = GenericMaths.Interpolate(chain.joints[i].transform.position, _v0 + _v1, chain.weight); } }