/// <summary> /// A top-down recursive method to find the nearest neighbors of a given point. /// </summary> /// <param name="nodeIndex">The index of the node for the current recursion branch.</param> /// <param name="target">The point whose neighbors we are trying to find.</param> /// <param name="rect">The <see cref="HyperRect{T}"/> containing the possible nearest neighbors.</param> /// <param name="dimension">The current splitting dimension for this recursion branch.</param> /// <param name="nearestNeighbors">The <see cref="KDTreePriorityList{TElement,TPriority}"/> containing the nearest neighbors already discovered.</param> /// <param name="maxSearchRadiusSquared">The squared radius of the current largest distance to search from the <paramref name="target"/></param> private void SearchForNearestNeighbors( int nodeIndex, TDimension[] target, HyperRect <TDimension> rect, int dimension, KDTreePriorityList <int, double> nearestNeighbors, double maxSearchRadiusSquared) { if (this.InternalPointArray.Length <= nodeIndex || nodeIndex < 0 || this.InternalPointArray[nodeIndex] == null) { return; } // Work out the current dimension var dim = dimension % this.Dimensions; // Split our hyper-rectangle into 2 sub rectangles along the current // node's point on the current dimension var leftRect = rect.Clone(); leftRect.MaxPoint[dim] = this.InternalPointArray[nodeIndex][dim]; var rightRect = rect.Clone(); rightRect.MinPoint[dim] = this.InternalPointArray[nodeIndex][dim]; // Determine which side the target resides in var compare = target[dim].CompareTo(this.InternalPointArray[nodeIndex][dim]); var nearerRect = compare <= 0 ? leftRect : rightRect; var furtherRect = compare <= 0 ? rightRect : leftRect; var nearerNode = compare <= 0 ? KDTreeNavigation.LeftChildIndex(nodeIndex) : KDTreeNavigation.RightChildIndex(nodeIndex); var furtherNode = compare <= 0 ? KDTreeNavigation.RightChildIndex(nodeIndex) : KDTreeNavigation.LeftChildIndex(nodeIndex); // Move down into the nearer branch this.SearchForNearestNeighbors( nearerNode, target, nearerRect, dimension + 1, nearestNeighbors, maxSearchRadiusSquared); // Walk down into the further branch but only if our capacity hasn't been reached // OR if there's a region in the further rectangle that's closer to the target than our // current furtherest nearest neighbor var closestPointInFurtherRect = furtherRect.GetClosestPoint(target); var distanceSquaredToTarget = this.Metric(closestPointInFurtherRect, target); if (distanceSquaredToTarget.CompareTo(maxSearchRadiusSquared) <= 0) { if (nearestNeighbors.IsFull) { if (distanceSquaredToTarget.CompareTo(nearestNeighbors.MaxPriority) < 0) { this.SearchForNearestNeighbors( furtherNode, target, furtherRect, dimension + 1, nearestNeighbors, maxSearchRadiusSquared); } } else { this.SearchForNearestNeighbors( furtherNode, target, furtherRect, dimension + 1, nearestNeighbors, maxSearchRadiusSquared); } } // Try to add the current node to our nearest neighbors list distanceSquaredToTarget = this.Metric(this.InternalPointArray[nodeIndex], target); if (distanceSquaredToTarget.CompareTo(maxSearchRadiusSquared) <= 0) { nearestNeighbors.Add(nodeIndex, distanceSquaredToTarget); } }
/// <summary> /// Grows a KD tree recursively via median splitting. We find the median by doing a full sort. /// </summary> /// <param name="index">The array index for the current node.</param> /// <param name="dim">The current splitting dimension.</param> /// <param name="points">The set of points remaining to be added to the kd-tree</param> /// <param name="nodes">The set of nodes RE</param> private void GenerateTree( int index, int dim, ICollection <TDimension[]> points, IEnumerable <TNode> nodes) { // See wikipedia for a good explanation kd-tree construction. // https://en.wikipedia.org/wiki/K-d_tree // zip both lists so we can sort nodes according to points IList <KDTreeTuple <TDimension[], TNode> > zippedList = new List <KDTreeTuple <TDimension[], TNode> >(); var nodeEnum = nodes.GetEnumerator(); foreach (TDimension[] point in points) { if (!nodeEnum.MoveNext()) { throw new InvalidOperationException("Node / Dim mismatch"); } zippedList.Add(new KDTreeTuple <TDimension[], TNode>(point, nodeEnum.Current)); } // sort the points along the current dimension var sortedPoints = zippedList.OrderBy(z => z.Dimensions[dim]).ToArray(); // get the point which has the median value of the current dimension. var medianPoint = sortedPoints[points.Count / 2]; var medianPointIdx = sortedPoints.Length / 2; // The point with the median value all the current dimension now becomes the value of the current tree node // The previous node becomes the parents of the current node. this.InternalPointArray[index] = medianPoint.Dimensions; this.InternalNodeArray[index] = medianPoint.Node; // We now split the sorted points into 2 groups // 1st group: points before the median var leftPoints = new TDimension[medianPointIdx][]; var leftNodes = new TNode[medianPointIdx]; Array.Copy(sortedPoints.Select(z => z.Dimensions).ToArray(), leftPoints, leftPoints.Length); Array.Copy(sortedPoints.Select(z => z.Node).ToArray(), leftNodes, leftNodes.Length); // 2nd group: Points after the median var rightPoints = new TDimension[sortedPoints.Length - (medianPointIdx + 1)][]; var rightNodes = new TNode[sortedPoints.Length - (medianPointIdx + 1)]; Array.Copy( sortedPoints.Select(z => z.Dimensions).ToArray(), medianPointIdx + 1, rightPoints, 0, rightPoints.Length); Array.Copy(sortedPoints.Select(z => z.Node).ToArray(), medianPointIdx + 1, rightNodes, 0, rightNodes.Length); // We new recurse, passing the left and right arrays for arguments. // The current node's left and right values become the "roots" for // each recursion call. We also forward cycle to the next dimension. var nextDim = (dim + 1) % this.Dimensions; // select next dimension // We only need to recurse if the point array contains more than one point // If the array has no points then the node stay a null value if (leftPoints.Length <= 1) { if (leftPoints.Length == 1) { this.InternalPointArray[KDTreeNavigation.LeftChildIndex(index)] = leftPoints[0]; this.InternalNodeArray[KDTreeNavigation.LeftChildIndex(index)] = leftNodes[0]; } } else { this.GenerateTree(KDTreeNavigation.LeftChildIndex(index), nextDim, leftPoints, leftNodes); } // Do the same for the right points if (rightPoints.Length <= 1) { if (rightPoints.Length == 1) { this.InternalPointArray[KDTreeNavigation.RightChildIndex(index)] = rightPoints[0]; this.InternalNodeArray[KDTreeNavigation.RightChildIndex(index)] = rightNodes[0]; } } else { this.GenerateTree(KDTreeNavigation.RightChildIndex(index), nextDim, rightPoints, rightNodes); } }