internal void AddChild(RegexNode newChild) { RegexNode reducedChild; if (_children == null) { _children = new List <RegexNode>(4); } reducedChild = newChild.Reduce(); _children.Add(reducedChild); reducedChild._next = this; }
/// <summary> /// The main RegexCode generator. It does a depth-first walk /// through the tree and calls EmitFragment to emits code before /// and after each child of an interior node, and at each leaf. /// </summary> private void EmitFragment(int nodetype, RegexNode node, int curIndex) { int bits = 0; if (nodetype <= RegexNode.Ref) { if (node.UseOptionR()) { bits |= RegexCode.Rtl; } if ((node._options & RegexOptions.IgnoreCase) != 0) { bits |= RegexCode.Ci; } } switch (nodetype) { case RegexNode.Concatenate | BeforeChild: case RegexNode.Concatenate | AfterChild: case RegexNode.Empty: break; case RegexNode.Alternate | BeforeChild: if (curIndex < node._children.Count - 1) { PushInt(CurPos()); Emit(RegexCode.Lazybranch, 0); } break; case RegexNode.Alternate | AfterChild: { if (curIndex < node._children.Count - 1) { int LBPos = PopInt(); PushInt(CurPos()); Emit(RegexCode.Goto, 0); PatchJump(LBPos, CurPos()); } else { int I; for (I = 0; I < curIndex; I++) { PatchJump(PopInt(), CurPos()); } } break; } case RegexNode.Testref | BeforeChild: switch (curIndex) { case 0: Emit(RegexCode.Setjump); PushInt(CurPos()); Emit(RegexCode.Lazybranch, 0); Emit(RegexCode.Testref, MapCapnum(node._m)); Emit(RegexCode.Forejump); break; } break; case RegexNode.Testref | AfterChild: switch (curIndex) { case 0: { int Branchpos = PopInt(); PushInt(CurPos()); Emit(RegexCode.Goto, 0); PatchJump(Branchpos, CurPos()); Emit(RegexCode.Forejump); if (node._children.Count > 1) { break; } // else fallthrough goto case 1; } case 1: PatchJump(PopInt(), CurPos()); break; } break; case RegexNode.Testgroup | BeforeChild: switch (curIndex) { case 0: Emit(RegexCode.Setjump); Emit(RegexCode.Setmark); PushInt(CurPos()); Emit(RegexCode.Lazybranch, 0); break; } break; case RegexNode.Testgroup | AfterChild: switch (curIndex) { case 0: Emit(RegexCode.Getmark); Emit(RegexCode.Forejump); break; case 1: int Branchpos = PopInt(); PushInt(CurPos()); Emit(RegexCode.Goto, 0); PatchJump(Branchpos, CurPos()); Emit(RegexCode.Getmark); Emit(RegexCode.Forejump); if (node._children.Count > 2) { break; } // else fallthrough goto case 2; case 2: PatchJump(PopInt(), CurPos()); break; } break; case RegexNode.Loop | BeforeChild: case RegexNode.Lazyloop | BeforeChild: if (node._n < int.MaxValue || node._m > 1) { Emit(node._m == 0 ? RegexCode.Nullcount : RegexCode.Setcount, node._m == 0 ? 0 : 1 - node._m); } else { Emit(node._m == 0 ? RegexCode.Nullmark : RegexCode.Setmark); } if (node._m == 0) { PushInt(CurPos()); Emit(RegexCode.Goto, 0); } PushInt(CurPos()); break; case RegexNode.Loop | AfterChild: case RegexNode.Lazyloop | AfterChild: { int StartJumpPos = CurPos(); int Lazy = (nodetype - (RegexNode.Loop | AfterChild)); if (node._n < int.MaxValue || node._m > 1) { Emit(RegexCode.Branchcount + Lazy, PopInt(), node._n == int.MaxValue ? int.MaxValue : node._n - node._m); } else { Emit(RegexCode.Branchmark + Lazy, PopInt()); } if (node._m == 0) { PatchJump(PopInt(), StartJumpPos); } } break; case RegexNode.Group | BeforeChild: case RegexNode.Group | AfterChild: break; case RegexNode.Capture | BeforeChild: Emit(RegexCode.Setmark); break; case RegexNode.Capture | AfterChild: Emit(RegexCode.Capturemark, MapCapnum(node._m), MapCapnum(node._n)); break; case RegexNode.Require | BeforeChild: // NOTE: the following line causes lookahead/lookbehind to be // NON-BACKTRACKING. It can be commented out with (*) Emit(RegexCode.Setjump); Emit(RegexCode.Setmark); break; case RegexNode.Require | AfterChild: Emit(RegexCode.Getmark); // NOTE: the following line causes lookahead/lookbehind to be // NON-BACKTRACKING. It can be commented out with (*) Emit(RegexCode.Forejump); break; case RegexNode.Prevent | BeforeChild: Emit(RegexCode.Setjump); PushInt(CurPos()); Emit(RegexCode.Lazybranch, 0); break; case RegexNode.Prevent | AfterChild: Emit(RegexCode.Backjump); PatchJump(PopInt(), CurPos()); Emit(RegexCode.Forejump); break; case RegexNode.Greedy | BeforeChild: Emit(RegexCode.Setjump); break; case RegexNode.Greedy | AfterChild: Emit(RegexCode.Forejump); break; case RegexNode.One: case RegexNode.Notone: Emit(node._type | bits, node._ch); break; case RegexNode.Notoneloop: case RegexNode.Notonelazy: case RegexNode.Oneloop: case RegexNode.Onelazy: if (node._m > 0) { Emit(((node._type == RegexNode.Oneloop || node._type == RegexNode.Onelazy) ? RegexCode.Onerep : RegexCode.Notonerep) | bits, node._ch, node._m); } if (node._n > node._m) { Emit(node._type | bits, node._ch, node._n == int.MaxValue ? int.MaxValue : node._n - node._m); } break; case RegexNode.Setloop: case RegexNode.Setlazy: if (node._m > 0) { Emit(RegexCode.Setrep | bits, StringCode(node._str), node._m); } if (node._n > node._m) { Emit(node._type | bits, StringCode(node._str), (node._n == int.MaxValue) ? int.MaxValue : node._n - node._m); } break; case RegexNode.Multi: Emit(node._type | bits, StringCode(node._str)); break; case RegexNode.Set: Emit(node._type | bits, StringCode(node._str)); break; case RegexNode.Ref: Emit(node._type | bits, MapCapnum(node._m)); break; case RegexNode.Nothing: case RegexNode.Bol: case RegexNode.Eol: case RegexNode.Boundary: case RegexNode.Nonboundary: case RegexNode.ECMABoundary: case RegexNode.NonECMABoundary: case RegexNode.Beginning: case RegexNode.Start: case RegexNode.EndZ: case RegexNode.End: Emit(node._type); break; default: throw new ArgumentException(""); } }
/* * This is a related computation: it takes a RegexTree and computes the * leading substring if it see one. It's quite trivial and gives up easily. */ internal static RegexPrefix Prefix(RegexTree tree) { RegexNode curNode; RegexNode concatNode = null; int nextChild = 0; curNode = tree._root; for (; ;) { switch (curNode._type) { case RegexNode.Concatenate: if (curNode.ChildCount() > 0) { concatNode = curNode; nextChild = 0; } break; case RegexNode.Greedy: case RegexNode.Capture: curNode = curNode.Child(0); concatNode = null; continue; case RegexNode.Oneloop: case RegexNode.Onelazy: if (curNode._m > 0) { string pref = string.Empty.PadRight(curNode._m, curNode._ch); return(new RegexPrefix(pref, 0 != (curNode._options & RegexOptions.IgnoreCase))); } else { return(RegexPrefix.Empty); } case RegexNode.One: return(new RegexPrefix(curNode._ch.ToString(), 0 != (curNode._options & RegexOptions.IgnoreCase))); case RegexNode.Multi: return(new RegexPrefix(curNode._str, 0 != (curNode._options & RegexOptions.IgnoreCase))); case RegexNode.Bol: case RegexNode.Eol: case RegexNode.Boundary: case RegexNode.ECMABoundary: case RegexNode.Beginning: case RegexNode.Start: case RegexNode.EndZ: case RegexNode.End: case RegexNode.Empty: case RegexNode.Require: case RegexNode.Prevent: break; default: return(RegexPrefix.Empty); } if (concatNode == null || nextChild >= concatNode.ChildCount()) { return(RegexPrefix.Empty); } curNode = concatNode.Child(nextChild++); } }
/* * FC computation and shortcut cases for each node type */ private void CalculateFC(int NodeType, RegexNode node, int CurIndex) { bool ci = false; bool rtl = false; if (NodeType <= RegexNode.Ref) { if ((node._options & RegexOptions.IgnoreCase) != 0) { ci = true; } if ((node._options & RegexOptions.RightToLeft) != 0) { rtl = true; } } switch (NodeType) { case RegexNode.Concatenate | BeforeChild: case RegexNode.Alternate | BeforeChild: case RegexNode.Testref | BeforeChild: case RegexNode.Loop | BeforeChild: case RegexNode.Lazyloop | BeforeChild: break; case RegexNode.Testgroup | BeforeChild: if (CurIndex == 0) { SkipChild(); } break; case RegexNode.Empty: PushFC(new RegexFC(true)); break; case RegexNode.Concatenate | AfterChild: if (CurIndex != 0) { RegexFC child = PopFC(); RegexFC cumul = TopFC(); _failed = !cumul.AddFC(child, true); } if (!TopFC()._nullable) { _skipAllChildren = true; } break; case RegexNode.Testgroup | AfterChild: if (CurIndex > 1) { RegexFC child = PopFC(); RegexFC cumul = TopFC(); _failed = !cumul.AddFC(child, false); } break; case RegexNode.Alternate | AfterChild: case RegexNode.Testref | AfterChild: if (CurIndex != 0) { RegexFC child = PopFC(); RegexFC cumul = TopFC(); _failed = !cumul.AddFC(child, false); } break; case RegexNode.Loop | AfterChild: case RegexNode.Lazyloop | AfterChild: if (node._m == 0) { TopFC()._nullable = true; } break; case RegexNode.Group | BeforeChild: case RegexNode.Group | AfterChild: case RegexNode.Capture | BeforeChild: case RegexNode.Capture | AfterChild: case RegexNode.Greedy | BeforeChild: case RegexNode.Greedy | AfterChild: break; case RegexNode.Require | BeforeChild: case RegexNode.Prevent | BeforeChild: SkipChild(); PushFC(new RegexFC(true)); break; case RegexNode.Require | AfterChild: case RegexNode.Prevent | AfterChild: break; case RegexNode.One: case RegexNode.Notone: PushFC(new RegexFC(node._ch, NodeType == RegexNode.Notone, false, ci)); break; case RegexNode.Oneloop: case RegexNode.Onelazy: PushFC(new RegexFC(node._ch, false, node._m == 0, ci)); break; case RegexNode.Notoneloop: case RegexNode.Notonelazy: PushFC(new RegexFC(node._ch, true, node._m == 0, ci)); break; case RegexNode.Multi: if (node._str.Length == 0) { PushFC(new RegexFC(true)); } else if (!rtl) { PushFC(new RegexFC(node._str[0], false, false, ci)); } else { PushFC(new RegexFC(node._str[node._str.Length - 1], false, false, ci)); } break; case RegexNode.Set: PushFC(new RegexFC(node._str, false, ci)); break; case RegexNode.Setloop: case RegexNode.Setlazy: PushFC(new RegexFC(node._str, node._m == 0, ci)); break; case RegexNode.Ref: PushFC(new RegexFC(RegexCharClass.AnyClass, true, false)); break; case RegexNode.Nothing: case RegexNode.Bol: case RegexNode.Eol: case RegexNode.Boundary: case RegexNode.Nonboundary: case RegexNode.ECMABoundary: case RegexNode.NonECMABoundary: case RegexNode.Beginning: case RegexNode.Start: case RegexNode.EndZ: case RegexNode.End: PushFC(new RegexFC(true)); break; default: throw new ArgumentException(""); } }