/// <summary> /// Random Walks for Simulation Problems. /// Creating sequences. /// Output needs to run in Grasshopper. /// But metric calculation again here. /// </summary> /// <param name="args"></param> static void RandomWalksSequenceCreation() { // n=4,10,11,13,17,18,20,35 int n = 10; // problem dimension int k = n * 100; // sequence size int walks = 20; // number of random walks Random rnd = new Random(42); string path = @"C:\temp\"; // parameters for sequence generation Sequences.parameters param = new Sequences.parameters(); param.distribution = "normal"; param.stepsize = 0.02; param.verbose = false; // create sequences (random walks) // and run on test functions string[] strxAll = new string[k * walks]; int counter = 0; for (int w = 0; w < walks; w++) { param.x0 = new double[n]; param.seed = w; for (int i = 0; i < n; i++) { param.x0[i] = rnd.NextDouble(); } double[][] x = Sequences.RandomWalk(n, k, param); for (int j = 0; j < k; j++) { strxAll[counter] += x[j][0]; for (int i = 1; i < n; i++) { strxAll[counter] += ";" + x[j][i]; } counter++; } } Misc.IO.WriteTextFile(path, "input_n" + n + "_allWalks.csv", strxAll); }
/// <summary> /// Random Walks for Mathematical test functions /// </summary> /// <param name="args"></param> static void RandomWalksTestFuncs() { int n = 20; // problem dimension int k = n * 100; // sequence size int walks = 20; // number of random walks Random rnd = new Random(42); string path = @"C:\"; List <Func <double[], double> > tf = new List <Func <double[], double> >(); tf.Add(SO.B_Sphere); // [-1, 1] for all x tf.Add(SO.L_Ackley); // [-32.768, 32.768] for all x tf.Add(SO.L_Rastrigin); // [-5.12, 5.12] for all x tf.Add(SO.V_Rosenbrock); // [-2.048, 2.048] for all x double[] lb = new double[tf.Count]; double[] ub = new double[tf.Count]; lb[0] = -1; lb[1] = -32.768; lb[2] = -5.12; lb[3] = -2.048; ub[0] = 1; ub[1] = 32.768; ub[2] = 5.12; ub[3] = 2.048; //tf.Add(FitnessLandscapeAnalysis.Testfunctions.SO.C_MichalewiczSchoenauer); // only for n=13. domain: [0,1] for i=0-8 and 12; [0,100] for i=9-11 //double[] lb = new double[13]; //double[] ub = new double[13]; //for (int i = 0; i < 9; i++) //{ // lb[i] = 0; // ub[i] = 1; //} //lb[12] = 0; //ub[12] = 1; //for (int i = 9; i < 12; i++) //{ // lb[i] = 0; // ub[i] = 100; //} // parameters for sequence generation Sequences.parameters param = new Sequences.parameters(); param.distribution = "normal"; param.stepsize = 0.02; param.verbose = false; // create sequences (random walks) // and run on test functions for (int w = 0; w < walks; w++) { param.seed = w; param.x0 = new double[n]; for (int i = 0; i < n; i++) { param.x0[i] = rnd.NextDouble(); } double[][] x = Sequences.RandomWalk(n, k, param); Console.WriteLine(" "); string[] strx = new string[k]; for (int j = 0; j < k; j++) { for (int i = 0; i < n; i++) { strx[j] += x[j][i] + ";"; } } Misc.IO.WriteTextFile(path, "input_n" + n + "_" + w + ".txt", strx); //compute outputs for x for every test function. List <double[]> ytf = new List <double[]>(); int counterr = 0; foreach (Func <double[], double> f in tf) { ytf.Add(new double[x.Length]); for (int i = 0; i < x.Length; i++) { double[] xin = new double[n]; for (int nn = 0; nn < n; nn++) { // NOT FOR MICHALEWICZ FUNCTION xin[nn] = (x[i][nn] * (ub[counterr] - lb[counterr])) + lb[counterr]; //// ONLY MICHALEWICZ //xin[nn] = (x[i][nn] * (ub[nn] - lb[nn])) + lb[nn]; } ytf[counterr][i] = f(xin); } counterr++; } //write outputs for (int f = 0; f < tf.Count; f++) { string[] stry = new string[k]; for (int j = 0; j < k; j++) { stry[j] = ytf[f][j] + ";"; } Misc.IO.WriteTextFile(path, "output_n" + n + "_tf" + f + "_walk" + w + ".txt", stry); //////MICHALEWICZ FUNCTION ONLY //writetextfile(path, "output_n" + n + "_tf" + 4 + "_walk" + w + ".txt", stry); } Console.WriteLine("walk {0} done", w); } Console.WriteLine("Done"); Console.ReadKey(); }
/// <summary> /// Sample test functions using input sequence /// </summary> /// <param name="args"></param> static void SampleTestFunctions() { int n = 40; // problem dimension. do it for n=10 and n=20. only for constraint, only for n=13 List <Func <double[], double> > tf = new List <Func <double[], double> >(); //________________________________________________________________________________________________________ ////////////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////////// // for BS19 paper //int k = (n + 1) * 10; // sequence size. Morris is (n+1)*10. sobol is (n+2)*100 or 10000 //string filepath = @"C:\Users\chwaibel\DATA\PROJEKTE\18_FitnessLandscapeAnalysis\04_CASESTUDY\BS19 CaseStudies\TestFuncs\MorrisAnalysis\Input\Morris_inputs_n13_large.csv"; //string outputpath = @"C:\Users\chwaibel\DATA\PROJEKTE\18_FitnessLandscapeAnalysis\04_CASESTUDY\BS19 CaseStudies\TestFuncs\MorrisAnalysis\Output\"; //tf.Add(FitnessLandscapeAnalysis.Testfunctions.SO.B_Sphere); // [-1, 1] for all x //tf.Add(FitnessLandscapeAnalysis.Testfunctions.SO.L_Ackley); // [-32.768, 32.768] for all x //tf.Add(FitnessLandscapeAnalysis.Testfunctions.SO.L_Rastrigin); // [-5.12, 5.12] for all x //tf.Add(FitnessLandscapeAnalysis.Testfunctions.SO.V_Rosenbrock); // [-2.048, 2.048] for all x //double[] lb = new double[tf.Count]; //double[] ub = new double[tf.Count]; //lb[0] = -1; //lb[1] = -32.768; //lb[2] = -5.12; //lb[3] = -2.048; //ub[0] = 1; //ub[1] = 32.768; //ub[2] = 5.12; //ub[3] = 2.048; //tf.Add(FitnessLandscapeAnalysis.Testfunctions.SO.C_MichalewiczSchoenauer); // only for n=13. domain: [0,1] for i=0-8 and 12; [0,100] for i=9-11 //double[] lb = new double[13]; //double[] ub = new double[13]; //for (int i = 0; i < 9; i++) //{ // lb[i] = 0; // ub[i] = 1; //} //lb[12] = 0; //ub[12] = 1; //for (int i = 9; i < 12; i++) //{ // lb[i] = 0; // ub[i] = 100; //} ////////////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////////// //________________________________________________________________________________________________________ //________________________________________________________________________________________________________ ////////////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////////// // for JBPS paper int k = (n + 2) * 10000; // sequence size. Morris is (n+1)*10. sobol is (n+2)*100 or 10000 string filepath = @"C:\Users\chwaibel\DATA\PROJEKTE\18_FitnessLandscapeAnalysis\04_CASESTUDY\TestFunctions_JBPS\Sobol\N40_input_large.csv"; string outputpath = @"C:\Users\chwaibel\DATA\PROJEKTE\18_FitnessLandscapeAnalysis\04_CASESTUDY\TestFunctions_JBPS\Sobol\"; tf.Add(SO.B_Sphere); // tf.Add(SO.L_Ackley); // tf.Add(SO.L_Rastrigin); // tf.Add(SO.V_Rosenbrock); // double[] lb = new double[tf.Count]; double[] ub = new double[tf.Count]; for (int i = 0; i < tf.Count(); i++) { lb[i] = -5; ub[i] = 5; } ////////////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////////// //________________________________________________________________________________________________________ Sequences.parameters param = new Sequences.parameters(); // loading sequences (pre-defined) // and run on test functions double[][] x = Sequences.LoadInputSequence(n, k, filepath, param); Console.WriteLine(" "); //compute outputs for x for every test function. List <double[]> ytf = new List <double[]>(); int counterr = 0; foreach (Func <double[], double> f in tf) { ytf.Add(new double[x.Length]); for (int j = 0; j < x.Length; j++) { double[] xin = new double[n]; for (int i = 0; i < n; i++) { xin[i] = x[j][i] * (ub[counterr] - lb[counterr]) + lb[counterr]; } ytf[counterr][j] = f(xin); } counterr++; } //write outputs for (int f = 0; f < tf.Count; f++) { string[] stry = new string[k]; for (int j = 0; j < k; j++) { stry[j] = ytf[f][j] + ";"; } Misc.IO.WriteTextFile(outputpath, "output_n" + n + "_tf" + f + ".csv", stry); //////MICHALEWICZ FUNCTION ONLY //writetextfile(outputpath, "output_n" + n + "_tf" + 4 + "_large.csv", stry); Console.WriteLine("tf {0} done", f); } Console.WriteLine("All Sampling done"); Console.ReadKey(); }