internal void WriteCache(ref SimplexCache cache) { cache.Metric = GetMetric(); cache.Count = (UInt16)Count; for (int i = 0; i < Count; ++i) { cache.IndexA[i] = (byte)(V[i].IndexA); cache.IndexB[i] = (byte)(V[i].IndexB); } }
internal void ReadCache(ref SimplexCache cache, DistanceProxy proxyA, ref Transform transformA, DistanceProxy proxyB, ref Transform transformB) { Debug.Assert(cache.Count <= 3); // Copy data from cache. Count = cache.Count; for (int i = 0; i < Count; ++i) { SimplexVertex v = V[i]; v.IndexA = cache.IndexA[i]; v.IndexB = cache.IndexB[i]; Vector2 wALocal = proxyA.Vertices[v.IndexA]; Vector2 wBLocal = proxyB.Vertices[v.IndexB]; v.WA = MathUtils.Multiply(ref transformA, wALocal); v.WB = MathUtils.Multiply(ref transformB, wBLocal); v.W = v.WB - v.WA; v.A = 0.0f; V[i] = v; } // Compute the new simplex metric, if it is substantially different than // old metric then flush the simplex. if (Count > 1) { float metric1 = cache.Metric; float metric2 = GetMetric(); if (metric2 < 0.5f * metric1 || 2.0f * metric1 < metric2 || metric2 < Settings.Epsilon) { // Reset the simplex. Count = 0; } } // If the cache is empty or invalid ... if (Count == 0) { SimplexVertex v = V[0]; v.IndexA = 0; v.IndexB = 0; Vector2 wALocal = proxyA.Vertices[0]; Vector2 wBLocal = proxyB.Vertices[0]; v.WA = MathUtils.Multiply(ref transformA, wALocal); v.WB = MathUtils.Multiply(ref transformB, wBLocal); v.W = v.WB - v.WA; V[0] = v; Count = 1; } }
public static void ComputeDistance(out DistanceOutput output, out SimplexCache cache, DistanceInput input) { cache = new SimplexCache(); ++GJKCalls; // Initialize the simplex. Simplex simplex = new Simplex(); simplex.ReadCache(ref cache, input.ProxyA, ref input.TransformA, input.ProxyB, ref input.TransformB); // Get simplex vertices as an array. const int k_maxIters = 20; // These store the vertices of the last simplex so that we // can check for duplicates and prevent cycling. FixedArray3 <int> saveA = new FixedArray3 <int>(); FixedArray3 <int> saveB = new FixedArray3 <int>(); Vector2 closestPoint = simplex.GetClosestPoint(); float distanceSqr1 = closestPoint.LengthSquared(); float distanceSqr2 = distanceSqr1; // Main iteration loop. int iter = 0; while (iter < k_maxIters) { // Copy simplex so we can identify duplicates. int saveCount = simplex.Count; for (int i = 0; i < saveCount; ++i) { saveA[i] = simplex.V[i].IndexA; saveB[i] = simplex.V[i].IndexB; } switch (simplex.Count) { case 1: break; case 2: simplex.Solve2(); break; case 3: simplex.Solve3(); break; default: Debug.Assert(false); break; } // If we have 3 points, then the origin is in the corresponding triangle. if (simplex.Count == 3) { break; } // Compute closest point. Vector2 p = simplex.GetClosestPoint(); distanceSqr2 = p.LengthSquared(); // Ensure progress if (distanceSqr2 >= distanceSqr1) { //break; } distanceSqr1 = distanceSqr2; // Get search direction. Vector2 d = simplex.GetSearchDirection(); // Ensure the search direction is numerically fit. if (d.LengthSquared() < Settings.Epsilon * Settings.Epsilon) { // The origin is probably contained by a line segment // or triangle. Thus the shapes are overlapped. // We can't return zero here even though there may be overlap. // In case the simplex is a point, segment, or triangle it is difficult // to determine if the origin is contained in the CSO or very close to it. break; } // Compute a tentative new simplex vertex using support points. SimplexVertex vertex = simplex.V[simplex.Count]; vertex.IndexA = input.ProxyA.GetSupport(MathUtils.MultiplyT(ref input.TransformA.R, -d)); vertex.WA = MathUtils.Multiply(ref input.TransformA, input.ProxyA.Vertices[vertex.IndexA]); vertex.IndexB = input.ProxyB.GetSupport(MathUtils.MultiplyT(ref input.TransformB.R, d)); vertex.WB = MathUtils.Multiply(ref input.TransformB, input.ProxyB.Vertices[vertex.IndexB]); vertex.W = vertex.WB - vertex.WA; simplex.V[simplex.Count] = vertex; // Iteration count is equated to the number of support point calls. ++iter; ++GJKIters; // Check for duplicate support points. This is the main termination criteria. bool duplicate = false; for (int i = 0; i < saveCount; ++i) { if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i]) { duplicate = true; break; } } // If we found a duplicate support point we must exit to avoid cycling. if (duplicate) { break; } // New vertex is ok and needed. ++simplex.Count; } GJKMaxIters = Math.Max(GJKMaxIters, iter); // Prepare output. simplex.GetWitnessPoints(out output.PointA, out output.PointB); output.Distance = (output.PointA - output.PointB).Length(); output.Iterations = iter; // Cache the simplex. simplex.WriteCache(ref cache); // Apply radii if requested. if (input.UseRadii) { float rA = input.ProxyA.Radius; float rB = input.ProxyB.Radius; if (output.Distance > rA + rB && output.Distance > Settings.Epsilon) { // Shapes are still no overlapped. // Move the witness points to the outer surface. output.Distance -= rA + rB; Vector2 normal = output.PointB - output.PointA; normal.Normalize(); output.PointA += rA * normal; output.PointB -= rB * normal; } else { // Shapes are overlapped when radii are considered. // Move the witness points to the middle. Vector2 p = 0.5f * (output.PointA + output.PointB); output.PointA = p; output.PointB = p; output.Distance = 0.0f; } } }
public static void Set(ref SimplexCache cache, DistanceProxy proxyA, ref Sweep sweepA, DistanceProxy proxyB, ref Sweep sweepB, float t1) { _localPoint = Vector2.Zero; _proxyA = proxyA; _proxyB = proxyB; int count = cache.Count; Debug.Assert(0 < count && count < 3); _sweepA = sweepA; _sweepB = sweepB; Transform xfA, xfB; _sweepA.GetTransform(out xfA, t1); _sweepB.GetTransform(out xfB, t1); if (count == 1) { _type = SeparationFunctionType.Points; Vector2 localPointA = _proxyA.Vertices[cache.IndexA[0]]; Vector2 localPointB = _proxyB.Vertices[cache.IndexB[0]]; Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA); Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB); _axis = pointB - pointA; _axis.Normalize(); return; } else if (cache.IndexA[0] == cache.IndexA[1]) { // Two points on B and one on A. _type = SeparationFunctionType.FaceB; Vector2 localPointB1 = proxyB.Vertices[cache.IndexB[0]]; Vector2 localPointB2 = proxyB.Vertices[cache.IndexB[1]]; Vector2 a = localPointB2 - localPointB1; _axis = new Vector2(a.Y, -a.X); _axis.Normalize(); Vector2 normal = MathUtils.Multiply(ref xfB.R, _axis); _localPoint = 0.5f * (localPointB1 + localPointB2); Vector2 pointB = MathUtils.Multiply(ref xfB, _localPoint); Vector2 localPointA = proxyA.Vertices[cache.IndexA[0]]; Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA); float s = Vector2.Dot(pointA - pointB, normal); if (s < 0.0f) { _axis = -_axis; s = -s; } return; } else { // Two points on A and one or two points on B. _type = SeparationFunctionType.FaceA; Vector2 localPointA1 = _proxyA.Vertices[cache.IndexA[0]]; Vector2 localPointA2 = _proxyA.Vertices[cache.IndexA[1]]; Vector2 a = localPointA2 - localPointA1; _axis = new Vector2(a.Y, -a.X); _axis.Normalize(); Vector2 normal = MathUtils.Multiply(ref xfA.R, _axis); _localPoint = 0.5f * (localPointA1 + localPointA2); Vector2 pointA = MathUtils.Multiply(ref xfA, _localPoint); Vector2 localPointB = _proxyB.Vertices[cache.IndexB[0]]; Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB); float s = Vector2.Dot(pointB - pointA, normal); if (s < 0.0f) { _axis = -_axis; s = -s; } return; } }