예제 #1
0
        public void Train(double[][,] images, List <WeakClassifier> weakClassifiers, bool[] results, int featureCount)
        {
            if (results.Count(r => r) == 0)
            {
                return;
            }
            if (results.Count(r => !r) == 0)
            {
                return;
            }

            var integralImages = IntegrateImages(images);

            var negativeCount = results.ToList().Where(r => r == false).Count();
            var positiveCount = results.ToList().Where(r => r == true).Count();

            WeakClassifiers = new List <WeakClassifier>();

            Betas   = new List <double>();
            Weights = new List <double>(); // Strong classifier Weights

            InitializeWeights(results);

            Console.WriteLine("Training started...");

            WeakClassifier minFeature = null;

            // Weak classifiers loop
            for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
            {
                // Normalize the weights
                var weightSum = ImagesWeights[featureIndex].Sum();
                for (int i = 0; i < images.Length; i++)
                {
                    ImagesWeights[featureIndex][i] /= weightSum;
                }

                // Train each weak classifier in parallel
                weakClassifiers.AsParallel().ForAll(wc =>
                {
                    wc.Train(ref integralImages, ref results, ImagesWeights[featureIndex]);
                });

                // Choosing weak classifier with lowest error
                minFeature = weakClassifiers.OrderBy(wc => wc.Error).First();

                // Saving weak classifier
                WeakClassifiers.Add(minFeature);
                weakClassifiers.Remove(minFeature);

                // Calc Betas and Weights
                Betas.Add(minFeature.Error / (1 - minFeature.Error));
                Weights.Add(Math.Log(1.0 / Betas[featureIndex]));

                // Weights update
                ImagesWeights.Add(new double[integralImages.Length]);
                for (int i = 0; i < integralImages.Length; i++)
                {
                    var featureResult = minFeature.Detect(integralImages[i]);

                    if (featureResult == results[i])
                    {
                        ImagesWeights[featureIndex + 1][i] = ImagesWeights[featureIndex][i] * Betas[featureIndex];
                    }
                    else
                    {
                        ImagesWeights[featureIndex + 1][i] = ImagesWeights[featureIndex][i];
                    }
                }

                Console.WriteLine("Feature #{0}. Error: {1}", featureIndex + 1, minFeature.Error);
            }

            var scores = CalcScores(integralImages, results);

            DetermineThreshold(ref scores);

            Statistics(images, results);

            Console.WriteLine("Training finished.");
        }
예제 #2
0
        public void AddWeakClassifier(double[][,] images, bool[] results, List <WeakClassifier> weakClassifiers)
        {
            if (results.Count(r => r) == 0)
            {
                return;
            }
            if (results.Count(r => !r) == 0)
            {
                return;
            }

            if (ImagesWeights == null)
            {
                ImagesWeights = new List <double[]>();
            }
            if (Weights == null)
            {
                Weights = new List <double>();
            }
            if (WeakClassifiers == null)
            {
                WeakClassifiers = new List <WeakClassifier>();
            }
            if (Betas == null)
            {
                Betas = new List <double>();
            }

            if (ImagesWeights.Count == 0)
            {
                InitializeWeights(results);
            }

            var integralImages = IntegrateImages(images);

            var negativeCount = results.ToList().Where(r => r == false).Count();
            var positiveCount = results.ToList().Where(r => r == true).Count();

            WeakClassifier minFeature = null;

            // Normalize the weights
            var weightSum = ImagesWeights.Last().Sum();

            for (int i = 0; i < images.Length; i++)
            {
                ImagesWeights.Last()[i] /= weightSum;
            }

            // Train each weak classifier in parallel
            weakClassifiers.AsParallel().ForAll(wc =>
            {
                wc.Train(ref integralImages, ref results, ImagesWeights.Last());
            });

            // Choosing weak classifier with lowest error
            minFeature = weakClassifiers.OrderBy(wc => wc.Error).First();

            if (double.IsNaN(minFeature.Error))
            {
                throw new Exception("Error is NaN");
            }

            // Saving weak classifier
            WeakClassifiers.Add(minFeature);
            weakClassifiers.Remove(minFeature);

            // Calc Betas and Weights
            Betas.Add(minFeature.Error / (1 - minFeature.Error));
            Weights.Add(Math.Log(1.0 / Betas.Last()));

            // Weights update
            ImagesWeights.Add(new double[integralImages.Length]);
            for (int i = 0; i < integralImages.Length; i++)
            {
                var featureResult = minFeature.Detect(integralImages[i]);

                if (featureResult == results[i])
                {
                    ImagesWeights.Last()[i] = ImagesWeights[ImagesWeights.Count - 2][i] * Betas[ImagesWeights.Count - 2];
                }
                else
                {
                    ImagesWeights.Last()[i] = ImagesWeights[ImagesWeights.Count - 2][i];
                }
            }

            var scores = CalcScores(integralImages, results);

            DetermineThreshold(ref scores);

            var detectionRate     = 0.0;
            var falsePositiveRate = 0.0;

            Evaluate(integralImages, results, out falsePositiveRate, out detectionRate);

            Console.WriteLine("Weak Classifier #{0} was added. Error: {1} Detection Rate: {2} False Positive Rate: {3}",
                              WeakClassifiers.Count, Math.Round(minFeature.Error, 5).ToString().PadRight(10),
                              Math.Round(detectionRate, 4).ToString().PadRight(10),
                              Math.Round(falsePositiveRate, 4).ToString().PadRight(10));
        }