예제 #1
0
        public static void CalculateSpectralAngles(SpectralLibrary spectralLibrary, PeptideSpectralMatch[] peptideSpectralMatches,
                                                   Ms2ScanWithSpecificMass[] arrayOfSortedMs2Scans, CommonParameters commonParameters)
        {
            foreach (PeptideSpectralMatch psm in peptideSpectralMatches.Where(p => p != null))
            {
                Ms2ScanWithSpecificMass scan = arrayOfSortedMs2Scans[psm.ScanIndex];

                //TODO: spectral angle could be used to disambiguate PSMs. right now for ambiguous PSMs, the spectral angle for only one peptide option is saved
                foreach (var peptide in psm.PeptidesToMatchingFragments)
                {
                    if (spectralLibrary == null || !spectralLibrary.TryGetSpectrum(peptide.Key.FullSequence, scan.PrecursorCharge, out var librarySpectrum))
                    {
                        continue;
                    }

                    double spectralAngle = CalculateNormalizedSpectralAngle(librarySpectrum.MatchedFragmentIons, scan.TheScan, commonParameters);

                    psm.SpectralAngle = spectralAngle;
                }
            }
        }
예제 #2
0
        public static List <MatchedFragmentIon> MatchFragmentIons(Ms2ScanWithSpecificMass scan, List <Product> theoreticalProducts, CommonParameters commonParameters)
        {
            var matchedFragmentIons = new List <MatchedFragmentIon>();

            // if the spectrum has no peaks
            if (!scan.ExperimentalFragments.Any())
            {
                return(matchedFragmentIons);
            }

            if (scan.TheScan.MassSpectrum.XcorrProcessed)
            {
                foreach (Product product in theoreticalProducts)
                {
                    // unknown fragment mass; this only happens rarely for sequences with unknown amino acids
                    if (double.IsNaN(product.NeutralMass))
                    {
                        continue;
                    }

                    double theoreticalFragmentMz = Math.Round(product.NeutralMass.ToMz(1) / 1.0005079, 0) * 1.0005079;
                    var    closestMzIndex        = scan.TheScan.MassSpectrum.GetClosestPeakIndex(theoreticalFragmentMz).Value;

                    if (commonParameters.ProductMassTolerance.Within(scan.TheScan.MassSpectrum.XArray[closestMzIndex], theoreticalFragmentMz))
                    {
                        matchedFragmentIons.Add(new MatchedFragmentIon(product, theoreticalFragmentMz, scan.TheScan.MassSpectrum.YArray[closestMzIndex], 1));
                    }
                }

                return(matchedFragmentIons);
            }

            // search for ions in the spectrum
            foreach (Product product in theoreticalProducts)
            {
                // unknown fragment mass; this only happens rarely for sequences with unknown amino acids
                if (double.IsNaN(product.NeutralMass))
                {
                    continue;
                }

                // get the closest peak in the spectrum to the theoretical peak
                var closestExperimentalMass = scan.GetClosestExperimentalFragmentMass(product.NeutralMass);

                // is the mass error acceptable?
                if (commonParameters.ProductMassTolerance.Within(closestExperimentalMass.monoisotopicMass, product.NeutralMass) && closestExperimentalMass.charge <= scan.PrecursorCharge)
                {
                    matchedFragmentIons.Add(new MatchedFragmentIon(product, closestExperimentalMass.monoisotopicMass.ToMz(closestExperimentalMass.charge),
                                                                   closestExperimentalMass.peaks.First().intensity, closestExperimentalMass.charge));
                }
            }
            if (commonParameters.AddCompIons)
            {
                double protonMassShift = complementaryIonConversionDictionary[commonParameters.DissociationType].ToMass(1);

                foreach (Product product in theoreticalProducts)
                {
                    // unknown fragment mass or diagnostic ion or precursor; skip those
                    if (double.IsNaN(product.NeutralMass) || product.ProductType == ProductType.D || product.ProductType == ProductType.M)
                    {
                        continue;
                    }

                    double compIonMass = scan.PrecursorMass + protonMassShift - product.NeutralMass;

                    // get the closest peak in the spectrum to the theoretical peak
                    var closestExperimentalMass = scan.GetClosestExperimentalFragmentMass(compIonMass);

                    // is the mass error acceptable?
                    if (commonParameters.ProductMassTolerance.Within(closestExperimentalMass.monoisotopicMass, compIonMass) && closestExperimentalMass.charge <= scan.PrecursorCharge)
                    {
                        matchedFragmentIons.Add(new MatchedFragmentIon(product, closestExperimentalMass.monoisotopicMass.ToMz(closestExperimentalMass.charge),
                                                                       closestExperimentalMass.totalIntensity, closestExperimentalMass.charge));
                    }
                }
            }

            return(matchedFragmentIons);
        }
예제 #3
0
        public static void CalculateSpectralAngles(SpectralLibrary spectralLibrary, PeptideSpectralMatch[] psms,
                                                   Ms2ScanWithSpecificMass[] arrayOfSortedMs2Scans, CommonParameters commonParameters)
        {
            if (spectralLibrary != null)
            {
                // one lock for each MS2 scan; a scan can only be accessed by one thread at a time
                var myLocks = new object[psms.Length];
                for (int i = 0; i < myLocks.Length; i++)
                {
                    myLocks[i] = new object();
                }

                int   maxThreadsPerFile = commonParameters.MaxThreadsToUsePerFile;
                int[] threads           = Enumerable.Range(0, maxThreadsPerFile).ToArray();
                Parallel.ForEach(threads, (i) =>
                {
                    // Stop loop if canceled
                    if (GlobalVariables.StopLoops)
                    {
                        return;
                    }
                    for (; i < psms.Length; i += maxThreadsPerFile)
                    {
                        lock (myLocks[i])
                        {
                            if (psms[i] != null)
                            {
                                Ms2ScanWithSpecificMass scan = arrayOfSortedMs2Scans[psms[i].ScanIndex];
                                List <(int, PeptideWithSetModifications)> pwsms = new();
                                List <double> pwsmSpectralAngles = new();
                                foreach (var(Notch, Peptide) in psms[i].BestMatchingPeptides)
                                {
                                    //if peptide is target, directly look for the target's spectrum in the spectral library
                                    if (!Peptide.Protein.IsDecoy && spectralLibrary.TryGetSpectrum(Peptide.FullSequence, scan.PrecursorCharge, out var librarySpectrum))
                                    {
                                        SpectralSimilarity s = new SpectralSimilarity(scan.TheScan.MassSpectrum, librarySpectrum.XArray, librarySpectrum.YArray, SpectralSimilarity.SpectrumNormalizationScheme.squareRootSpectrumSum, commonParameters.ProductMassTolerance.Value, false);
                                        if (s.SpectralContrastAngle().HasValue)
                                        {
                                            pwsms.Add((Notch, Peptide));
                                            pwsmSpectralAngles.Add((double)s.SpectralContrastAngle());
                                        }
                                    }

                                    //if peptide is decoy, look for the decoy's corresponding target's spectrum in the spectral library and generate decoy spectrum by function GetDecoyLibrarySpectrumFromTargetByRevers
                                    else if (Peptide.Protein.IsDecoy && spectralLibrary.TryGetSpectrum(Peptide.PeptideDescription, scan.PrecursorCharge, out var targetlibrarySpectrum))
                                    {
                                        var decoyPeptideTheorProducts = new List <Product>();
                                        Peptide.Fragment(commonParameters.DissociationType, commonParameters.DigestionParams.FragmentationTerminus, decoyPeptideTheorProducts);
                                        var decoylibrarySpectrum = GetDecoyLibrarySpectrumFromTargetByReverse(targetlibrarySpectrum, decoyPeptideTheorProducts);
                                        SpectralSimilarity s     = new SpectralSimilarity(scan.TheScan.MassSpectrum, decoylibrarySpectrum.Select(x => x.Mz).ToArray(), decoylibrarySpectrum.Select(x => x.Intensity).ToArray(), SpectralSimilarity.SpectrumNormalizationScheme.squareRootSpectrumSum, commonParameters.ProductMassTolerance.Value, false);
                                        if (s.SpectralContrastAngle().HasValue)
                                        {
                                            pwsms.Add((Notch, Peptide));
                                            pwsmSpectralAngles.Add((double)s.SpectralContrastAngle());
                                        }
                                    }
                                }
                                if (pwsmSpectralAngles.Count > 0 && !pwsmSpectralAngles.Max().Equals(null))
                                {
                                    psms[i].SpectralAngle = pwsmSpectralAngles.Max();
                                }
                                else
                                {
                                    psms[i].SpectralAngle = -1;
                                }
                            }
                        }