private void trainNetworkBackprop() { // IMLTrain train = new Backpropagation(this.network, this.input,this.ideal, 0.000001, 0.1); IMLDataSet aset = new BasicMLDataSet(input, ideal); int epoch = 1; // train the neural network ICalculateScore score = new TrainingSetScore(aset); IMLTrain trainAlt = new NeuralSimulatedAnnealing(network, score, 10, 2, 100); IMLTrain trainMain = new Backpropagation(network, aset, 0.001, 0.0); StopTrainingStrategy stop = new StopTrainingStrategy(); var pop = new NEATPopulation(INPUT_SIZE, OUTPUT_SIZE, 1000); // train the neural network var step = new ActivationStep(); step.Center = 0.5; pop.OutputActivationFunction = step; var train = new NEATTraining(score, pop); trainMain.AddStrategy(new Greedy()); trainMain.AddStrategy(new HybridStrategy(trainAlt)); trainMain.AddStrategy(stop); trainMain.AddStrategy(new HybridStrategy(train)); network.ClearContext(); while (!stop.ShouldStop()) { trainMain.Iteration(); train.Iteration(); Console.WriteLine(@"Training " + @"Epoch #" + epoch + @" Error:" + trainMain.Error+ @" Genetic iteration:"+trainAlt.IterationNumber+ @"neat iteration:"+train.IterationNumber ); epoch++; } }
private void Validate(NEATPopulation pop) { Assert.AreEqual(0.3, pop.OldAgePenalty); Assert.AreEqual(50, pop.OldAgeThreshold); Assert.AreEqual(10, pop.PopulationSize); Assert.AreEqual(0.2, pop.SurvivalRate); Assert.AreEqual(10, pop.YoungBonusAgeThreshold); Assert.AreEqual(0.3, pop.YoungScoreBonus); // see if the population can actually be used to train IMLDataSet trainingSet = new BasicMLDataSet(XOR.XORInput, XOR.XORIdeal); ICalculateScore score = new TrainingSetScore(trainingSet); NEATTraining train = new NEATTraining(score, pop); train.Iteration(); }