private static async Task Run() { SessionOptions so = new SessionOptions(); if (TfInvoke.IsGoogleCudaEnabled) { Tensorflow.ConfigProto config = new Tensorflow.ConfigProto(); config.GpuOptions = new Tensorflow.GPUOptions(); config.GpuOptions.AllowGrowth = true; so.SetConfig(config.ToProtobuf()); } _inceptionGraph = new Emgu.TF.Models.Inception(null, so); _inceptionGraph.OnDownloadProgressChanged += onDownloadProgressChanged; //_inceptionGraph.OnDownloadCompleted += onDownloadCompleted; //use a retrained model to recognize followers await _inceptionGraph.Init( new string[] { "optimized_graph.pb", "output_labels.txt" }, "https://github.com/emgucv/models/raw/master/inception_flower_retrain/", "Placeholder", "final_result"); Stopwatch watch = Stopwatch.StartNew(); Tensor imageTensor = Emgu.TF.Models.ImageIO.ReadTensorFromImageFile <float>(_inputFileInfo.FullName, 299, 299, 0.0f, 1.0f / 255.0f, false, false); var results = _inceptionGraph.Recognize(imageTensor); watch.Stop(); String resStr = String.Format("Object is {0} with {1}% probability. Recognition completed in {2} milliseconds.", results[0].Label, results[0].Probability * 100, watch.ElapsedMilliseconds); System.Console.WriteLine(resStr); }
private static async Task Run() { SessionOptions so = new SessionOptions(); Tensorflow.ConfigProto config = new Tensorflow.ConfigProto(); #if DEBUG config.LogDevicePlacement = true; #endif if (TfInvoke.IsGoogleCudaEnabled) { config.GpuOptions = new Tensorflow.GPUOptions(); config.GpuOptions.AllowGrowth = true; } so.SetConfig(config.ToProtobuf()); _inceptionGraph = new Emgu.TF.Models.Inception(null, so); _inceptionGraph.OnDownloadProgressChanged += onDownloadProgressChanged; //_inceptionGraph.OnDownloadCompleted += onDownloadCompleted; System.Console.WriteLine("Initializing model"); //use a retrained model to recognize followers await _inceptionGraph.Init( new string[] { "optimized_graph.pb", "output_labels.txt" }, "https://github.com/emgucv/models/raw/master/inception_flower_retrain/", "Placeholder", "final_result"); System.Console.WriteLine("Model initialized."); Session.Device[] devices = GetSessionDevices(_inceptionGraph.Session); StringBuilder sb = new StringBuilder(); foreach (Session.Device d in devices) { sb.Append(String.Format("{1}: {0}{2}", d.Name, d.Type, Environment.NewLine)); } System.Console.WriteLine(String.Format("Default Session Devices:{0}{1}", Environment.NewLine, sb.ToString())); Stopwatch watch = Stopwatch.StartNew(); System.Console.WriteLine("Reading image into tensor"); Tensor imageTensor = Emgu.TF.Models.ImageIO.ReadTensorFromImageFile <float>(_inputFileInfo.FullName, 299, 299, 0.0f, 1.0f / 255.0f, false, false); System.Console.WriteLine("Running inference..."); var results = _inceptionGraph.Recognize(imageTensor); watch.Stop(); String resStr = String.Format("Object is {0} with {1}% probability. Recognition completed in {2} milliseconds.", results[0][0].Label, results[0][0].Probability * 100, watch.ElapsedMilliseconds); System.Console.WriteLine(resStr); }
private static void Run() { SessionOptions so = new SessionOptions(); if (TfInvoke.IsGoogleCudaEnabled) { Tensorflow.ConfigProto config = new Tensorflow.ConfigProto(); config.GpuOptions = new Tensorflow.GPUOptions(); config.GpuOptions.AllowGrowth = true; so.SetConfig(config.ToProtobuf()); } _inceptionGraph = new Emgu.TF.Models.Inception(null, so); _inceptionGraph.OnDownloadProgressChanged += onDownloadProgressChanged; _inceptionGraph.OnDownloadCompleted += onDownloadCompleted; //use a retrained model to recognize followers _inceptionGraph.Init( new string[] { "optimized_graph.pb", "output_labels.txt" }, "https://github.com/emgucv/models/raw/master/inception_flower_retrain/", "Placeholder", "final_result"); }