static void Main() { Application.EnableVisualStyles(); Application.SetCompatibleTextRenderingDefault(false); using (Mat image = new Mat("pedestrian.png")) { long processingTime; Rectangle[] results; if (CudaInvoke.HasCuda) { using (GpuMat gpuMat = new GpuMat(image)) results = FindPedestrian.Find(gpuMat, out processingTime); } else { using (UMat uImage = image.GetUMat(AccessType.ReadWrite)) results = FindPedestrian.Find(uImage, out processingTime); } foreach (Rectangle rect in results) { CvInvoke.Rectangle(image, rect, new Bgr(Color.Red).MCvScalar); } ImageViewer.Show( image, String.Format("Pedestrian detection using {0} in {1} milliseconds.", CudaInvoke.HasCuda ? "GPU" : CvInvoke.UseOpenCL ? "OpenCL": "CPU", processingTime)); } }
public static void FindMatch(Mat modelImage, Mat observedImage, out long matchTime, out VectorOfKeyPoint modelKeyPoints, out VectorOfKeyPoint observedKeyPoints, VectorOfVectorOfDMatch matches, out Mat mask, out Mat homography, out long score) { int k = 2; double uniquenessThreshold = 0.80; Stopwatch watch; homography = null; modelKeyPoints = new VectorOfKeyPoint(); observedKeyPoints = new VectorOfKeyPoint(); using (UMat uModelImage = modelImage.GetUMat(AccessType.Read)) using (UMat uObservedImage = observedImage.GetUMat(AccessType.Read)) { KAZE featureDetector = new KAZE(); Mat modelDescriptors = new Mat(); featureDetector.DetectAndCompute(uModelImage, null, modelKeyPoints, modelDescriptors, false); watch = Stopwatch.StartNew(); Mat observedDescriptors = new Mat(); featureDetector.DetectAndCompute(uObservedImage, null, observedKeyPoints, observedDescriptors, false); // KdTree for faster results / less accuracy using (var ip = new Emgu.CV.Flann.KdTreeIndexParams()) using (var sp = new SearchParams()) using (DescriptorMatcher matcher = new FlannBasedMatcher(ip, sp)) { matcher.Add(modelDescriptors); matcher.KnnMatch(observedDescriptors, matches, k, null); mask = new Mat(matches.Size, 1, DepthType.Cv8U, 1); mask.SetTo(new MCvScalar(255)); Features2DToolbox.VoteForUniqueness(matches, uniquenessThreshold, mask); // Calculate score based on matches size // ----------------------------------------------> score = 0; for (int i = 0; i < matches.Size; i++) { if (mask.GetData(i)[0] == 0) { continue; } foreach (var e in matches[i].ToArray()) { ++score; } } // <---------------------------------------------- int nonZeroCount = CvInvoke.CountNonZero(mask); if (nonZeroCount >= 4) { nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, matches, mask, 1.5, 20); if (nonZeroCount >= 4) { homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, matches, mask, 2); } } } watch.Stop(); } matchTime = watch.ElapsedMilliseconds; }