/// <summary> /// Create a new HOGDescriptor /// </summary> public GpuHOGDescriptor() { _ptr = gpuHOGDescriptorCreateDefault(); _rectStorage = new MemStorage(); _rectSeq = new Seq<Rectangle>(_rectStorage); _vector = new VectorOfFloat(); }
/// <summary> /// /// </summary> /// <param name="image"></param> /// <param name="winStride"></param> /// <param name="locations"></param> /// <returns></returns> public float[] Compute(Image<Gray, Byte> image, Size winStride, Point[] locations) { using (VectorOfFloat vof = new VectorOfFloat()) { GCHandle handle = GCHandle.Alloc(locations, GCHandleType.Pinned); CvSelfSimDescriptorCompute(_ptr, image, vof, ref winStride, handle.AddrOfPinnedObject(), locations.Length); handle.Free(); return vof.ToArray(); } }
/* * public static void TestDrawLine(IntPtr img, int startX, int startY, int endX, int endY, MCvScalar color) * { * TestDrawLine(img, startX, startY, endX, endY, color.v0, color.v1, color.v2, color.v3); * } * * [DllImport(CvInvoke.EXTERN_LIBRARY, CallingConvention = CvInvoke.CvCallingConvention, EntryPoint="testDrawLine")] * private static extern void TestDrawLine(IntPtr img, int startX, int startY, int endX, int endY, double v0, double v1, double v2, double v3); */ /// <summary> /// Implements the chamfer matching algorithm on images taking into account both distance from /// the template pixels to the nearest pixels and orientation alignment between template and image /// contours. /// </summary> /// <param name="img">The edge image where search is performed</param> /// <param name="templ">The template (an edge image)</param> /// <param name="contours">The output contours</param> /// <param name="cost">The cost associated with the matching</param> /// <param name="templScale">The template scale, use 1 for default</param> /// <param name="maxMatches">The maximum number of matches, use 20 for default</param> /// <param name="minMatchDistance">The minimum match distance. use 1.0 for default</param> /// <param name="padX">PadX, use 3 for default</param> /// <param name="padY">PadY, use 3 for default</param> /// <param name="scales">Scales, use 5 for default</param> /// <param name="minScale">Minimum scale, use 0.6 for default</param> /// <param name="maxScale">Maximum scale, use 1.6 for default</param> /// <param name="orientationWeight">Orientation weight, use 0.5 for default</param> /// <param name="truncate">Truncate, use 20 for default</param> /// <returns>The number of matches</returns> public static int cvChamferMatching(Image <Gray, Byte> img, Image <Gray, Byte> templ, out Point[][] contours, out float[] cost, double templScale, int maxMatches, double minMatchDistance, int padX, int padY, int scales, double minScale, double maxScale, double orientationWeight, double truncate) { using (Emgu.CV.Util.VectorOfVectorOfPoint vecOfVecOfPoint = new Util.VectorOfVectorOfPoint()) using (Emgu.CV.Util.VectorOfFloat vecOfFloat = new Util.VectorOfFloat()) { int count = _cvChamferMatching(img, templ, vecOfVecOfPoint, vecOfFloat, templScale, maxMatches, minMatchDistance, padX, padY, scales, minScale, maxScale, orientationWeight, truncate); contours = vecOfVecOfPoint.ToArray(); cost = vecOfFloat.ToArray(); return(count); } }
/// <summary> /// Compute the descriptor given the image and the point location /// </summary> /// <param name="image">The image where the descriptor will be computed from</param> /// <param name="mask">The optional mask, can be null if not needed</param> /// <param name="keyPoints">The keypoint where the descriptor will be computed from</param> /// <returns>The image features founded on the keypoint location</returns> public ImageFeature[] ComputeDescriptors(Image<Gray, Byte> image, Image<Gray, byte> mask, MKeyPoint[] keyPoints) { using (VectorOfFloat descs = new VectorOfFloat()) using (VectorOfKeyPoint kpts = new VectorOfKeyPoint()) { kpts.Push(keyPoints); CvSURFDetectorComputeDescriptors(ref this, image, mask, kpts, descs); int n = keyPoints.Length; long address = descs.StartAddress.ToInt64(); ImageFeature[] features = new ImageFeature[n]; int sizeOfdescriptor = extended == 0 ? 64 : 128; for (int i = 0; i < n; i++, address += sizeOfdescriptor * sizeof(float)) { features[i].KeyPoint = keyPoints[i]; float[] desc = new float[sizeOfdescriptor]; Marshal.Copy(new IntPtr(address), desc, 0, sizeOfdescriptor); features[i].Descriptor = desc; } return features; } }
/// <summary> /// Calculates optical flow for a sparse feature set using iterative Lucas-Kanade method in pyramids /// </summary> /// <param name="prev">First frame, at time t</param> /// <param name="curr">Second frame, at time t + dt </param> /// <param name="prevFeatures">Array of points for which the flow needs to be found</param> /// <param name="winSize">Size of the search window of each pyramid level</param> /// <param name="level">Maximal pyramid level number. If 0 , pyramids are not used (single level), if 1 , two levels are used, etc</param> /// <param name="criteria">Specifies when the iteration process of finding the flow for each point on each pyramid level should be stopped</param> /// <param name="flags">Flags</param> /// <param name="currFeatures">Array of 2D points containing calculated new positions of input features in the second image</param> /// <param name="status">Array. Every element of the array is set to 1 if the flow for the corresponding feature has been found, 0 otherwise</param> /// <param name="trackError">Array of double numbers containing difference between patches around the original and moved points</param> /// <param name="minEigThreshold">the algorithm calculates the minimum eigen value of a 2x2 normal matrix of optical flow equations (this matrix is called a spatial gradient matrix in [Bouguet00]), divided by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding feature is filtered out and its flow is not processed, so it allows to remove bad points and get a performance boost.</param> public static void CalcOpticalFlowPyrLK( IInputArray prev, IInputArray curr, PointF[] prevFeatures, Size winSize, int level, MCvTermCriteria criteria, out PointF[] currFeatures, out Byte[] status, out float[] trackError, Emgu.CV.CvEnum.LKFlowFlag flags = CvEnum.LKFlowFlag.Default, double minEigThreshold = 1.0e-4) { using (Util.VectorOfPointF prevPts = new Util.VectorOfPointF()) using (Util.VectorOfPointF nextPts = new Util.VectorOfPointF()) using (Util.VectorOfByte statusVec = new Util.VectorOfByte()) using (Util.VectorOfFloat errorVec = new Util.VectorOfFloat()) { prevPts.Push(prevFeatures); CalcOpticalFlowPyrLK( prev, curr, prevPts, nextPts, statusVec, errorVec, winSize, level, criteria, flags, minEigThreshold); status = statusVec.ToArray(); trackError = errorVec.ToArray(); currFeatures = nextPts.ToArray(); } }
/* #region Kalman Filter /// <summary> /// Allocates CvKalman and all its matrices and initializes them somehow. /// </summary> /// <param name="dynamParams">dimensionality of the state vector</param> /// <param name="measureParams">dimensionality of the measurement vector </param> /// <param name="controlParams">dimensionality of the control vector </param> /// <returns>Pointer to the created Kalman filter</returns> [DllImport(OpencvVideoLibrary, CallingConvention = CvInvoke.CvCallingConvention)] public static extern IntPtr cvCreateKalman(int dynamParams, int measureParams, int controlParams); /// <summary> /// Adjusts stochastic model state on the basis of the given measurement of the model state. /// The function stores adjusted state at kalman->state_post and returns it on output /// </summary> /// <param name="kalman">Pointer to the structure to be updated</param> /// <param name="measurement">Pointer to the structure CvMat containing the measurement vector</param> /// <returns>The function stores adjusted state at kalman->state_post and returns it on output</returns> [DllImport(OpencvVideoLibrary, CallingConvention = CvInvoke.CvCallingConvention)] public static extern IntPtr cvKalmanCorrect(ref MCvKalman kalman, IntPtr measurement); /// <summary> /// Estimates the subsequent stochastic model state by its current state and stores it at kalman->state_pre /// The function returns the estimated state /// </summary> /// <param name="kalman">Kalman filter state</param> /// <param name="control">Control vector (uk), should be NULL iff there is no external control (controlParams=0). </param> /// <returns>the estimated state</returns> [DllImport(OpencvVideoLibrary, CallingConvention = CvInvoke.CvCallingConvention)] public static extern IntPtr cvKalmanPredict(ref MCvKalman kalman, IntPtr control); /// <summary> /// Releases the structure CvKalman and all underlying matrices /// </summary> /// <param name="kalman">reference of the pointer to the Kalman filter structure.</param> [DllImport(OpencvVideoLibrary, CallingConvention = CvInvoke.CvCallingConvention)] public static extern void cvReleaseKalman(ref IntPtr kalman); #endregion */ #region optical flow /// <summary> /// Calculates optical flow for a sparse feature set using iterative Lucas-Kanade method in pyramids /// </summary> /// <param name="prev">First frame, at time t</param> /// <param name="curr">Second frame, at time t + dt </param> /// <param name="prevFeatures">Array of points for which the flow needs to be found</param> /// <param name="winSize">Size of the search window of each pyramid level</param> /// <param name="level">Maximal pyramid level number. If 0 , pyramids are not used (single level), if 1 , two levels are used, etc</param> /// <param name="criteria">Specifies when the iteration process of finding the flow for each point on each pyramid level should be stopped</param> /// <param name="flags">Flags</param> /// <param name="currFeatures">Array of 2D points containing calculated new positions of input features in the second image</param> /// <param name="status">Array. Every element of the array is set to 1 if the flow for the corresponding feature has been found, 0 otherwise</param> /// <param name="trackError">Array of double numbers containing difference between patches around the original and moved points</param> /// <param name="minEigThreshold">the algorithm calculates the minimum eigen value of a 2x2 normal matrix of optical flow equations (this matrix is called a spatial gradient matrix in [Bouguet00]), divided by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding feature is filtered out and its flow is not processed, so it allows to remove bad points and get a performance boost.</param> public static void CalcOpticalFlowPyrLK( IInputArray prev, IInputArray curr, PointF[] prevFeatures, Size winSize, int level, MCvTermCriteria criteria, out PointF[] currFeatures, out Byte[] status, out float[] trackError, Emgu.CV.CvEnum.LKFlowFlag flags = CvEnum.LKFlowFlag.Default, double minEigThreshold = 1.0e-4) { using (Util.VectorOfPointF prevPts = new Util.VectorOfPointF()) using (Util.VectorOfPointF nextPts = new Util.VectorOfPointF()) using (Util.VectorOfByte statusVec = new Util.VectorOfByte()) using (Util.VectorOfFloat errorVec = new Util.VectorOfFloat()) { prevPts.Push(prevFeatures); CalcOpticalFlowPyrLK( prev, curr, prevPts, nextPts, statusVec, errorVec, winSize, level, criteria, flags, minEigThreshold); status = statusVec.ToArray(); trackError = errorVec.ToArray(); currFeatures = nextPts.ToArray(); } }
/// <summary> /// Compute the descriptor given the image and the point location /// </summary> /// <param name="image">The image where the descriptor will be computed from</param> /// <param name="mask">The optional mask, can be null if not needed</param> /// <param name="keyPoints">The keypoint where the descriptor will be computed from</param> /// <returns>The image features founded on the keypoint location</returns> public ImageFeature[] ComputeDescriptors(Image<Gray, Byte> image, Image<Gray, byte> mask, MKeyPoint[] keyPoints) { if (keyPoints.Length == 0) return new ImageFeature[0]; using (VectorOfFloat descVec = new VectorOfFloat()) using (VectorOfKeyPoint kpts = new VectorOfKeyPoint()) { kpts.Push(keyPoints); CvSIFTDetectorComputeDescriptors(_ptr, image, mask, kpts, descVec); int n = keyPoints.Length; float[] descs = descVec.ToArray(); //long address = descVec.StartAddress.ToInt64(); ImageFeature[] features = new ImageFeature[n]; int sizeOfdescriptor = DescriptorSize; for (int i = 0; i < n; i++) { features[i].KeyPoint = keyPoints[i]; float[] d = new float[sizeOfdescriptor]; Array.Copy(descs, i * sizeOfdescriptor, d, 0, sizeOfdescriptor); features[i].Descriptor = d; } return features; } }
/// <summary> /// Detect image features from the given image /// </summary> /// <param name="image">The image to detect features from</param> /// <param name="mask">The optional mask, can be null if not needed</param> /// <returns>The Image features detected from the given image</returns> public ImageFeature[] DetectFeatures(Image<Gray, Byte> image, Image<Gray, byte> mask) { using (VectorOfKeyPoint pts = new VectorOfKeyPoint()) using (VectorOfFloat descVec = new VectorOfFloat()) { CvSIFTDetectorDetectFeature(_ptr, image, mask, pts, descVec); MKeyPoint[] kpts = pts.ToArray(); float[] desc = descVec.ToArray(); int n = kpts.Length; int sizeOfdescriptor = DescriptorSize; ImageFeature[] features = new ImageFeature[n]; for (int i = 0; i < n; i++) { features[i].KeyPoint = kpts[i]; float[] d = new float[sizeOfdescriptor]; Array.Copy(desc, i * sizeOfdescriptor, d, 0, sizeOfdescriptor); features[i].Descriptor = d; } return features; } }
public DebuggerProxy(VectorOfFloat v) { _v = v; }
/// <summary> /// Push multiple values from the other vector into this vector /// </summary> /// <param name="other">The other vector, from which the values will be pushed to the current vector</param> public void Push(VectorOfFloat other) { VectorOfFloatPushVector(_ptr, other); }
/* public static void TestDrawLine(IntPtr img, int startX, int startY, int endX, int endY, MCvScalar color) { TestDrawLine(img, startX, startY, endX, endY, color.v0, color.v1, color.v2, color.v3); } [DllImport(CvInvoke.EXTERN_LIBRARY, CallingConvention = CvInvoke.CvCallingConvention, EntryPoint="testDrawLine")] private static extern void TestDrawLine(IntPtr img, int startX, int startY, int endX, int endY, double v0, double v1, double v2, double v3); */ /// <summary> /// Implements the chamfer matching algorithm on images taking into account both distance from /// the template pixels to the nearest pixels and orientation alignment between template and image /// contours. /// </summary> /// <param name="img">The edge image where search is performed</param> /// <param name="templ">The template (an edge image)</param> /// <param name="contours">The output contours</param> /// <param name="cost">The cost associated with the matching</param> /// <param name="templScale">The template scale, use 1 for default</param> /// <param name="maxMatches">The maximum number of matches, use 20 for default</param> /// <param name="minMatchDistance">The minimum match distance. use 1.0 for default</param> /// <param name="padX">PadX, use 3 for default</param> /// <param name="padY">PadY, use 3 for default</param> /// <param name="scales">Scales, use 5 for default</param> /// <param name="minScale">Minimum scale, use 0.6 for default</param> /// <param name="maxScale">Maximum scale, use 1.6 for default</param> /// <param name="orientationWeight">Orientation weight, use 0.5 for default</param> /// <param name="truncate">Truncate, use 20 for default</param> /// <returns>The number of matches</returns> public static int cvChamferMatching(Image<Gray, Byte> img, Image<Gray, Byte> templ, out Point[][] contours, out float[] cost, double templScale, int maxMatches, double minMatchDistance, int padX, int padY, int scales, double minScale, double maxScale, double orientationWeight, double truncate) { using (Emgu.CV.Util.VectorOfVectorOfPoint vecOfVecOfPoint = new Util.VectorOfVectorOfPoint()) using (Emgu.CV.Util.VectorOfFloat vecOfFloat = new Util.VectorOfFloat()) { int count = _cvChamferMatching(img, templ, vecOfVecOfPoint, vecOfFloat, templScale, maxMatches, minMatchDistance, padX, padY, scales, minScale, maxScale, orientationWeight, truncate); contours = vecOfVecOfPoint.ToArray(); cost = vecOfFloat.ToArray(); return count; } }