public ScorePatternsRatioModifiedFreq(ConstantsAndVariables constVars, GetPatternsFromDataMultiClass.PatternScoring patternScoring, string label, ICollection <CandidatePhrase> allCandidatePhrases, TwoDimensionalCounter <E, CandidatePhrase> patternsandWords4Label , TwoDimensionalCounter <E, CandidatePhrase> negPatternsandWords4Label, TwoDimensionalCounter <E, CandidatePhrase> unLabeledPatternsandWords4Label, TwoDimensionalCounter <CandidatePhrase, ConstantsAndVariables.ScorePhraseMeasures> phInPatScores , ScorePhrases scorePhrases, Properties props) : base(constVars, patternScoring, label, allCandidatePhrases, patternsandWords4Label, negPatternsandWords4Label, unLabeledPatternsandWords4Label, props) { this.phInPatScores = phInPatScores; this.scorePhrases = scorePhrases; }
/// <exception cref="System.IO.IOException"/> /// <exception cref="System.TypeLoadException"/> internal virtual ICounter <E> Convert2OneDim(string label, IToDoubleFunction <Pair <E, CandidatePhrase> > scoringFunction, ICollection <CandidatePhrase> allCandidatePhrases, TwoDimensionalCounter <E, CandidatePhrase> positivePatternsAndWords, bool sqrtPatScore, bool scorePhrasesInPatSelection, ICounter <CandidatePhrase> dictOddsWordWeights, bool useFreqPhraseExtractedByPat) { // if (Data.googleNGram.size() == 0 && Data.googleNGramsFile != null) { // Data.loadGoogleNGrams(); // } ICounter <E> patterns = new ClassicCounter <E>(); ICounter <CandidatePhrase> googleNgramNormScores = new ClassicCounter <CandidatePhrase>(); ICounter <CandidatePhrase> domainNgramNormScores = new ClassicCounter <CandidatePhrase>(); ICounter <CandidatePhrase> externalFeatWtsNormalized = new ClassicCounter <CandidatePhrase>(); ICounter <CandidatePhrase> editDistanceFromOtherSemanticBinaryScores = new ClassicCounter <CandidatePhrase>(); ICounter <CandidatePhrase> editDistanceFromAlreadyExtractedBinaryScores = new ClassicCounter <CandidatePhrase>(); double externalWtsDefault = 0.5; ICounter <string> classifierScores = null; if ((patternScoring.Equals(GetPatternsFromDataMultiClass.PatternScoring.PhEvalInPat) || patternScoring.Equals(GetPatternsFromDataMultiClass.PatternScoring.PhEvalInPatLogP)) && scorePhrasesInPatSelection) { foreach (CandidatePhrase gc in allCandidatePhrases) { string g = gc.GetPhrase(); if (constVars.usePatternEvalEditDistOther) { editDistanceFromOtherSemanticBinaryScores.SetCount(gc, constVars.GetEditDistanceScoresOtherClassThreshold(label, g)); } if (constVars.usePatternEvalEditDistSame) { editDistanceFromAlreadyExtractedBinaryScores.SetCount(gc, 1 - constVars.GetEditDistanceScoresThisClassThreshold(label, g)); } if (constVars.usePatternEvalGoogleNgram) { googleNgramNormScores.SetCount(gc, PhraseScorer.GetGoogleNgramScore(gc)); } if (constVars.usePatternEvalDomainNgram) { // calculate domain-ngram wts if (Data.domainNGramRawFreq.ContainsKey(g)) { System.Diagnostics.Debug.Assert((Data.rawFreq.ContainsKey(gc))); domainNgramNormScores.SetCount(gc, scorePhrases.phraseScorer.GetDomainNgramScore(g)); } } if (constVars.usePatternEvalWordClass) { int num = constVars.GetWordClassClusters()[g]; if (num == null) { num = constVars.GetWordClassClusters()[g.ToLower()]; } if (num != null && constVars.distSimWeights[label].ContainsKey(num)) { externalFeatWtsNormalized.SetCount(gc, constVars.distSimWeights[label].GetCount(num)); } else { externalFeatWtsNormalized.SetCount(gc, externalWtsDefault); } } } if (constVars.usePatternEvalGoogleNgram) { googleNgramNormScores = GetPatternsFromDataMultiClass.NormalizeSoftMaxMinMaxScores(googleNgramNormScores, true, true, false); } if (constVars.usePatternEvalDomainNgram) { domainNgramNormScores = GetPatternsFromDataMultiClass.NormalizeSoftMaxMinMaxScores(domainNgramNormScores, true, true, false); } if (constVars.usePatternEvalWordClass) { externalFeatWtsNormalized = GetPatternsFromDataMultiClass.NormalizeSoftMaxMinMaxScores(externalFeatWtsNormalized, true, true, false); } } else { if ((patternScoring.Equals(GetPatternsFromDataMultiClass.PatternScoring.Logreg) || patternScoring.Equals(GetPatternsFromDataMultiClass.PatternScoring.LOGREGlogP)) && scorePhrasesInPatSelection) { Properties props2 = new Properties(); props2.PutAll(props); props2.SetProperty("phraseScorerClass", "edu.stanford.nlp.patterns.ScorePhrasesLearnFeatWt"); ScorePhrases scoreclassifier = new ScorePhrases(props2, constVars); System.Console.Out.WriteLine("file is " + props.GetProperty("domainNGramsFile")); ArgumentParser.FillOptions(typeof(Data), props2); classifierScores = scoreclassifier.phraseScorer.ScorePhrases(label, allCandidatePhrases, true); } } ICounter <CandidatePhrase> cachedScoresForThisIter = new ClassicCounter <CandidatePhrase>(); foreach (KeyValuePair <E, ClassicCounter <CandidatePhrase> > en in positivePatternsAndWords.EntrySet()) { foreach (KeyValuePair <CandidatePhrase, double> en2 in en.Value.EntrySet()) { CandidatePhrase word = en2.Key; ICounter <ConstantsAndVariables.ScorePhraseMeasures> scoreslist = new ClassicCounter <ConstantsAndVariables.ScorePhraseMeasures>(); double score = 1; if ((patternScoring.Equals(GetPatternsFromDataMultiClass.PatternScoring.PhEvalInPat) || patternScoring.Equals(GetPatternsFromDataMultiClass.PatternScoring.PhEvalInPatLogP)) && scorePhrasesInPatSelection) { if (cachedScoresForThisIter.ContainsKey(word)) { score = cachedScoresForThisIter.GetCount(word); } else { if (constVars.GetOtherSemanticClassesWords().Contains(word) || constVars.GetCommonEngWords().Contains(word)) { score = 1; } else { if (constVars.usePatternEvalSemanticOdds) { double semanticClassOdds = 1; if (dictOddsWordWeights.ContainsKey(word)) { semanticClassOdds = 1 - dictOddsWordWeights.GetCount(word); } scoreslist.SetCount(ConstantsAndVariables.ScorePhraseMeasures.Semanticodds, semanticClassOdds); } if (constVars.usePatternEvalGoogleNgram) { double gscore = 0; if (googleNgramNormScores.ContainsKey(word)) { gscore = 1 - googleNgramNormScores.GetCount(word); } scoreslist.SetCount(ConstantsAndVariables.ScorePhraseMeasures.Googlengram, gscore); } if (constVars.usePatternEvalDomainNgram) { double domainscore; if (domainNgramNormScores.ContainsKey(word)) { domainscore = 1 - domainNgramNormScores.GetCount(word); } else { domainscore = 1 - scorePhrases.phraseScorer.GetPhraseWeightFromWords(domainNgramNormScores, word, scorePhrases.phraseScorer.OOVDomainNgramScore); } scoreslist.SetCount(ConstantsAndVariables.ScorePhraseMeasures.Domainngram, domainscore); } if (constVars.usePatternEvalWordClass) { double externalFeatureWt = externalWtsDefault; if (externalFeatWtsNormalized.ContainsKey(word)) { externalFeatureWt = 1 - externalFeatWtsNormalized.GetCount(word); } scoreslist.SetCount(ConstantsAndVariables.ScorePhraseMeasures.Distsim, externalFeatureWt); } if (constVars.usePatternEvalEditDistOther) { System.Diagnostics.Debug.Assert(editDistanceFromOtherSemanticBinaryScores.ContainsKey(word), "How come no edit distance info for word " + word + string.Empty); scoreslist.SetCount(ConstantsAndVariables.ScorePhraseMeasures.Editdistother, editDistanceFromOtherSemanticBinaryScores.GetCount(word)); } if (constVars.usePatternEvalEditDistSame) { scoreslist.SetCount(ConstantsAndVariables.ScorePhraseMeasures.Editdistsame, editDistanceFromAlreadyExtractedBinaryScores.GetCount(word)); } // taking average score = Counters.Mean(scoreslist); phInPatScores.SetCounter(word, scoreslist); } cachedScoresForThisIter.SetCount(word, score); } } else { if ((patternScoring.Equals(GetPatternsFromDataMultiClass.PatternScoring.Logreg) || patternScoring.Equals(GetPatternsFromDataMultiClass.PatternScoring.LOGREGlogP)) && scorePhrasesInPatSelection) { score = 1 - classifierScores.GetCount(word); } } // score = 1 - scorePhrases.scoreUsingClassifer(classifier, // e.getKey(), label, true, null, null, dictOddsWordWeights); // throw new RuntimeException("not implemented yet"); if (useFreqPhraseExtractedByPat) { score = score * scoringFunction.ApplyAsDouble(new Pair <E, CandidatePhrase>(en.Key, word)); } if (constVars.sqrtPatScore) { patterns.IncrementCount(en.Key, Math.Sqrt(score)); } else { patterns.IncrementCount(en.Key, score); } } } return(patterns); }