private void btnRun_Click(object sender, EventArgs e) { try { if (cboFieldName.Text == "") { MessageBox.Show("Please select the dependent input variables to be used in the regression model.", "Please choose at least one input variable"); return; } if (lstIndeVar.Items.Count == 0) { MessageBox.Show("Please select independents input variables to be used in the regression model.", "Please choose at least one input variable"); return; } if (cboFieldName.Text == "") { MessageBox.Show("Please select the dependent input variables to be used in the regression model.", "Please choose at least one input variable"); return; } if (lstIndeVar.Items.Count == 0) { MessageBox.Show("Please select independents input variables to be used in the regression model.", "Please choose at least one input variable"); return; } frmProgress pfrmProgress = new frmProgress(); pfrmProgress.lblStatus.Text = "Pre-Processing:"; pfrmProgress.pgbProgress.Style = ProgressBarStyle.Marquee; pfrmProgress.Show(); //Decimal places int intDeciPlaces = 5; //Get number of Independent variables int nIDepen = lstIndeVar.Items.Count; // Gets the column of the dependent variable String dependentName = (string)cboFieldName.SelectedItem; //sourceTable.AcceptChanges(); //DataTable dependent = sourceTable.DefaultView.ToTable(false, dependentName); // Gets the columns of the independent variables String[] independentNames = new string[nIDepen]; for (int j = 0; j < nIDepen; j++) { independentNames[j] = (string)lstIndeVar.Items[j]; } int nFeature = m_dt.Rows.Count; //Get index for independent and dependent variables int intDepenIdx = m_dt.Columns.IndexOf(dependentName); int[] idxes = new int[nIDepen]; for (int j = 0; j < nIDepen; j++) { idxes[j] = m_dt.Columns.IndexOf(independentNames[j]); } //Store independent values at Array double[] arrDepen = new double[nFeature]; double[][] arrInDepen = new double[nIDepen][]; for (int j = 0; j < nIDepen; j++) { arrInDepen[j] = new double[nFeature]; } int i = 0; foreach (DataRow row in m_dt.Rows) { arrDepen[i] = Convert.ToDouble(row[intDepenIdx]); for (int j = 0; j < nIDepen; j++) { arrInDepen[j][i] = Convert.ToDouble(row[idxes[j]]); } i++; } //Plot command for R StringBuilder plotCommmand = new StringBuilder(); if (!m_blnCreateSWM) { //Get the file path and name to create spatial weight matrix string strNameR = m_pSnippet.FilePathinRfromLayer(m_pMaplayer); if (strNameR == null) { return; } //Create spatial weight matrix in R if (m_pMaplayer is MapPointLayer) { m_pEngine.Evaluate("sample.shp <- readShapePoints('" + strNameR + "')"); } else if (m_pMaplayer is MapPolygonLayer) { m_pEngine.Evaluate("sample.shp <- readShapePoly('" + strNameR + "')"); } else { MessageBox.Show("This geometry type is not supported"); pfrmProgress.Close(); this.Close(); } int intSuccess = m_pSnippet.CreateSpatialWeightMatrix(m_pEngine, m_pMaplayer, txtSWM.Text, pfrmProgress); if (intSuccess == 0) { return; } } //Dependent variable to R vector NumericVector vecDepen = m_pEngine.CreateNumericVector(arrDepen); m_pEngine.SetSymbol(dependentName, vecDepen); if (rbtError.Checked) { plotCommmand.Append("errorsarlm(" + dependentName + "~"); } else if (rbtLag.Checked || rbtDurbin.Checked) { plotCommmand.Append("lagsarlm(" + dependentName + "~"); } else { plotCommmand.Append("spautolm(" + dependentName + "~"); } for (int j = 0; j < nIDepen; j++) { //double[] arrVector = arrInDepen.GetColumn<double>(j); NumericVector vecIndepen = m_pEngine.CreateNumericVector(arrInDepen[j]); m_pEngine.SetSymbol(independentNames[j], vecIndepen); plotCommmand.Append(independentNames[j] + "+"); } plotCommmand.Remove(plotCommmand.Length - 1, 1); //Select Method if (rbtEigen.Checked) { plotCommmand.Append(", method='eigen'"); } else if (rbtMatrix.Checked) { plotCommmand.Append(", method='Matrix'"); } else if (rbtMatrixJ.Checked) { plotCommmand.Append(", method='Matrix_J'"); } else if (rbtLU.Checked) { plotCommmand.Append(", method='LU'"); } else if (rbtChebyshev.Checked) { plotCommmand.Append(", method='Chebyshev'"); } else if (rbtMC.Checked) { plotCommmand.Append(", method='MC'"); } else { plotCommmand.Append(", method='eigen'"); } if (rbtError.Checked) { plotCommmand.Append(", listw=sample.listw, tol.solve=1.0e-20, zero.policy=TRUE)"); } else if (rbtLag.Checked) { plotCommmand.Append(", listw=sample.listw, tol.solve=1.0e-20, zero.policy=TRUE)"); } else if (rbtCAR.Checked) { plotCommmand.Append(", listw=sample.listw, family='CAR', verbose=TRUE, zero.policy=TRUE)"); } else if (rbtSMA.Checked) { plotCommmand.Append(", listw=sample.listw, family='SMA', verbose=TRUE, zero.policy=TRUE)"); } else if (rbtDurbin.Checked) { plotCommmand.Append(", type='mixed', listw=sample.listw, tol.solve=1.0e-20, zero.policy=TRUE)"); } else { return; } try { m_pEngine.Evaluate("sum.lm <- summary(" + plotCommmand.ToString() + ", Nagelkerke=T)"); } catch { MessageBox.Show("Cannot solve the regression. Try again with different variables."); pfrmProgress.Close(); return; } //Collect results from R NumericMatrix matCoe = m_pEngine.Evaluate("as.matrix(sum.lm$Coef)").AsNumericMatrix(); double dblLRLambda = m_pEngine.Evaluate("as.numeric(sum.lm$LR1$statistic)").AsNumeric().First(); double dblpLambda = m_pEngine.Evaluate("as.numeric(sum.lm$LR1$p.value)").AsNumeric().First(); double dblLRErrorModel = m_pEngine.Evaluate("as.numeric(sum.lm$LR1$estimate)").AsNumeric().First(); double dblSigmasquared = 0; double dblAIC = 0; double dblWald = 0; double dblpWald = 0; if (rbtLag.Checked || rbtError.Checked || rbtDurbin.Checked) { dblSigmasquared = m_pEngine.Evaluate("as.numeric(sum.lm$s2)").AsNumeric().First(); //dblAIC = pEngine.Evaluate("as.numeric(sum.lm$AIC_lm.model)").AsNumeric().First(); dblWald = m_pEngine.Evaluate("as.numeric(sum.lm$Wald1$statistic)").AsNumeric().First(); dblpWald = m_pEngine.Evaluate("as.numeric(sum.lm$Wald1$p.value)").AsNumeric().First(); double dblParaCnt = m_pEngine.Evaluate("as.numeric(sum.lm$parameters)").AsNumeric().First(); dblAIC = (2 * dblParaCnt) - (2 * dblLRErrorModel); } else { dblSigmasquared = m_pEngine.Evaluate("as.numeric(sum.lm$fit$s2)").AsNumeric().First(); double dblParaCnt = m_pEngine.Evaluate("as.numeric(sum.lm$parameters)").AsNumeric().First(); dblAIC = (2 * dblParaCnt) - (2 * dblLRErrorModel); } //int intNObser = pEngine.Evaluate("as.numeric(nrow(sum.lm$X))").AsInteger().First(); //int intNParmeter = pEngine.Evaluate(" as.numeric(sum.lm$parameters)").AsInteger().First(); double dblLambda = 0; double dblSELambda = 0; double dblResiAuto = 0; double dblResiAutoP = 0; if (rbtLag.Checked || rbtDurbin.Checked) { dblLambda = m_pEngine.Evaluate("as.numeric(sum.lm$rho)").AsNumeric().First(); dblSELambda = m_pEngine.Evaluate("as.numeric(sum.lm$rho.se)").AsNumeric().First(); dblResiAuto = m_pEngine.Evaluate("as.numeric(sum.lm$LMtest)").AsNumeric().First(); dblResiAutoP = m_pEngine.Evaluate("as.numeric(sum.lm$rho.se)").AsNumeric().First(); } else { dblLambda = m_pEngine.Evaluate("as.numeric(sum.lm$lambda)").AsNumeric().First(); dblSELambda = m_pEngine.Evaluate("as.numeric(sum.lm$lambda.se)").AsNumeric().First(); } double dblRsquared = m_pEngine.Evaluate("as.numeric(sum.lm$NK)").AsNumeric().First(); //Draw result form //Open Ouput form frmRegResult pfrmRegResult = new frmRegResult(); if (rbtError.Checked) { pfrmRegResult.Text = "Spatial Autoregressive Model Summary (Error Model)"; } else if (rbtLag.Checked) { pfrmRegResult.Text = "Spatial Autoregressive Model Summary (Lag Model)"; } else if (rbtCAR.Checked) { pfrmRegResult.Text = "Spatial Autoregressive Model Summary (CAR Model)"; } else if (rbtDurbin.Checked) { pfrmRegResult.Text = "Spatial Autoregressive Model Summary (Spatial Durbin Model)"; } else { pfrmRegResult.Text = "Spatial Autoregressive Model Summary (SMA Model)"; } //pfrmRegResult.panel2.Visible = true; //Create DataTable to store Result System.Data.DataTable tblRegResult = new DataTable("SRResult"); //Assign DataTable DataColumn dColName = new DataColumn(); dColName.DataType = System.Type.GetType("System.String"); dColName.ColumnName = "Name"; tblRegResult.Columns.Add(dColName); DataColumn dColValue = new DataColumn(); dColValue.DataType = System.Type.GetType("System.Double"); dColValue.ColumnName = "Estimate"; tblRegResult.Columns.Add(dColValue); DataColumn dColSE = new DataColumn(); dColSE.DataType = System.Type.GetType("System.Double"); dColSE.ColumnName = "Std. Error"; tblRegResult.Columns.Add(dColSE); String.Format("{0:0.##}", tblRegResult.Columns["Std. Error"]); DataColumn dColTValue = new DataColumn(); dColTValue.DataType = System.Type.GetType("System.Double"); dColTValue.ColumnName = "z value"; tblRegResult.Columns.Add(dColTValue); DataColumn dColPvT = new DataColumn(); dColPvT.DataType = System.Type.GetType("System.Double"); dColPvT.ColumnName = "Pr(>|z|)"; tblRegResult.Columns.Add(dColPvT); if (rbtDurbin.Checked) { nIDepen = nIDepen * 2; } //Store Data Table by R result for (int j = 0; j < nIDepen + 1; j++) { DataRow pDataRow = tblRegResult.NewRow(); if (j == 0) { pDataRow["Name"] = "(Intercept)"; } else { if (rbtDurbin.Checked) { if (j <= nIDepen / 2) { pDataRow["Name"] = independentNames[j - 1]; } else { pDataRow["Name"] = "lag." + independentNames[j - (nIDepen / 2) - 1]; } } else { pDataRow["Name"] = independentNames[j - 1]; } } pDataRow["Estimate"] = Math.Round(matCoe[j, 0], intDeciPlaces); pDataRow["Std. Error"] = Math.Round(matCoe[j, 1], intDeciPlaces); pDataRow["z value"] = Math.Round(matCoe[j, 2], intDeciPlaces); pDataRow["Pr(>|z|)"] = Math.Round(matCoe[j, 3], intDeciPlaces); tblRegResult.Rows.Add(pDataRow); } //Assign Datagridview to Data Table pfrmRegResult.dgvResults.DataSource = tblRegResult; //Assign values at Textbox string strDecimalPlaces = "N" + intDeciPlaces.ToString(); string[] strResults = new string[5]; if (rbtLag.Checked || rbtDurbin.Checked) { strResults[0] = "rho: " + dblLambda.ToString(strDecimalPlaces) + ", LR Test Value: " + dblLRLambda.ToString(strDecimalPlaces) + ", p-value: " + dblpLambda.ToString(strDecimalPlaces); strResults[1] = "Asymptotic S.E: " + dblSELambda.ToString(strDecimalPlaces) + ", Wald: " + dblWald.ToString(strDecimalPlaces) + ", p-value: " + dblpWald.ToString(strDecimalPlaces); strResults[2] = "Log likelihood: " + dblLRErrorModel.ToString(strDecimalPlaces) + ", Sigma-squared: " + dblSigmasquared.ToString(strDecimalPlaces); strResults[3] = "AIC: " + dblAIC.ToString(strDecimalPlaces) + ", LM test for residuals autocorrelation: " + dblResiAuto.ToString(strDecimalPlaces); } else if (rbtError.Checked) { strResults[0] = "Lambda: " + dblLambda.ToString(strDecimalPlaces) + ", LR Test Value: " + dblLRLambda.ToString(strDecimalPlaces) + ", p-value: " + dblpLambda.ToString(strDecimalPlaces); strResults[1] = "Asymptotic S.E: " + dblSELambda.ToString(strDecimalPlaces) + ", Wald: " + dblWald.ToString(strDecimalPlaces) + ", p-value: " + dblpWald.ToString(strDecimalPlaces); strResults[2] = "Log likelihood: " + dblLRErrorModel.ToString(strDecimalPlaces) + ", Sigma-squared: " + dblSigmasquared.ToString(strDecimalPlaces); strResults[3] = "AIC: " + dblAIC.ToString(strDecimalPlaces); } else { strResults[0] = "Lambda: " + dblLambda.ToString(strDecimalPlaces) + ", LR Test Value: " + dblLRLambda.ToString(strDecimalPlaces) + ", p-value: " + dblpLambda.ToString(strDecimalPlaces); strResults[1] = "Numerical Hessian S.E of lambda: " + dblSELambda.ToString(strDecimalPlaces); strResults[2] = "Log likelihood: " + dblLRErrorModel.ToString(strDecimalPlaces) + ", Sigma-squared: " + dblSigmasquared.ToString(strDecimalPlaces); strResults[3] = "AIC: " + dblAIC.ToString(strDecimalPlaces); } strResults[4] = "Nagelkerke pseudo-R-squared: " + dblRsquared.ToString(strDecimalPlaces); pfrmRegResult.txtOutput.Lines = strResults; if (chkSave.Checked) { pfrmProgress.lblStatus.Text = "Saving residuals:"; //The field names are related with string[] DeterminedName in clsSnippet string strResiFldName = lstSave.Items[0].SubItems[1].Text; //Get EVs and residuals NumericVector nvResiduals = m_pEngine.Evaluate("as.numeric(sum.lm$residuals)").AsNumeric(); if (rbtCAR.Checked || rbtSMA.Checked) { nvResiduals = m_pEngine.Evaluate("as.numeric(sum.lm$fit$residuals)").AsNumeric(); } // Create field, if there isn't if (m_dt.Columns.IndexOf(strResiFldName) == -1) { //Add fields DataColumn pColumn = new DataColumn(strResiFldName); pColumn.DataType = Type.GetType("System.Double"); m_dt.Columns.Add(pColumn); } else { DialogResult dialogResult = MessageBox.Show("Do you want to overwrite " + strResiFldName + " field?", "Overwrite", MessageBoxButtons.YesNo); if (dialogResult == DialogResult.No) { return; } } //Update Field int featureIdx = 0; int intResiFldIdx = m_dt.Columns.IndexOf(strResiFldName); foreach (DataRow row in m_dt.Rows) { //Update Residuals row[intResiFldIdx] = nvResiduals[featureIdx]; featureIdx++; } //Save Result; if (m_pMaplayer is MapPointLayer) { MapPointLayer pMapPointLyr = default(MapPointLayer); pMapPointLyr = (MapPointLayer)m_pMaplayer; pMapPointLyr.DataSet.Save(); } else if (m_pMaplayer is MapPolygonLayer) { MapPolygonLayer pMapPolyLyr = default(MapPolygonLayer); pMapPolyLyr = (MapPolygonLayer)m_pMaplayer; pMapPolyLyr.DataSet.Save(); } else if (m_pMaplayer is MapLineLayer) { MapLineLayer pMapLineLyr = default(MapLineLayer); pMapLineLyr = (MapLineLayer)m_pMaplayer; pMapLineLyr.DataSet.Save(); } } pfrmProgress.Close(); pfrmRegResult.Show(); } catch (Exception ex) { frmErrorLog pfrmErrorLog = new frmErrorLog(); pfrmErrorLog.ex = ex; pfrmErrorLog.ShowDialog(); return; } }
private void BinomRegression(frmProgress pfrmProgress, IMapLayer pMapLayer, string strLM, int nIDepen, String[] independentNames, int intDeciPlaces) { try { pfrmProgress.lblStatus.Text = "Calculate Regression Coefficients"; m_pEngine.Evaluate("sample.glm <- glm(" + strLM + ", family='binomial')"); pfrmProgress.lblStatus.Text = "Printing Output:"; m_pEngine.Evaluate("sum.glm <- summary(sample.glm)"); m_pEngine.Evaluate("sample.n <- length(sample.nb)"); NumericMatrix matCoe = m_pEngine.Evaluate("as.matrix(sum.glm$coefficient)").AsNumericMatrix(); CharacterVector vecNames = m_pEngine.Evaluate("attributes(sum.glm$coefficients)$dimnames[[1]]").AsCharacter(); double dblNullDevi = m_pEngine.Evaluate("sum.glm$null.deviance").AsNumeric().First(); double dblNullDF = m_pEngine.Evaluate("sum.glm$df.null").AsNumeric().First(); double dblResiDevi = m_pEngine.Evaluate("sum.glm$deviance").AsNumeric().First(); double dblResiDF = m_pEngine.Evaluate("sum.glm$df.residual").AsNumeric().First(); //Nagelkerke r squared double dblPseudoRsquared = m_pEngine.Evaluate("(1 - exp((sample.glm$dev - sample.glm$null)/sample.n))/(1 - exp(-sample.glm$null/sample.n))").AsNumeric().First(); double dblResiLMMC = 0; double dblResiLMpVal = 0; if (chkResiAuto.Checked) { m_pEngine.Evaluate("orgresi.mc <-moran.mc(residuals(sample.glm, type='" + cboResiType.Text + "'), listw =sample.listb, nsim=999, zero.policy=TRUE)"); dblResiLMMC = m_pEngine.Evaluate("orgresi.mc$statistic").AsNumeric().First(); dblResiLMpVal = m_pEngine.Evaluate("orgresi.mc$p.value").AsNumeric().First(); } NumericVector nvecNonAIC = m_pEngine.Evaluate("sample.glm$aic").AsNumeric(); //Open Ouput form frmRegResult pfrmRegResult = new frmRegResult(); pfrmRegResult.Text = "Binomial Regression Summary"; //Create DataTable to store Result System.Data.DataTable tblRegResult = new DataTable("BinoResult"); //Assign DataTable DataColumn dColName = new DataColumn(); dColName.DataType = System.Type.GetType("System.String"); dColName.ColumnName = "Name"; tblRegResult.Columns.Add(dColName); DataColumn dColValue = new DataColumn(); dColValue.DataType = System.Type.GetType("System.Double"); dColValue.ColumnName = "Estimate"; tblRegResult.Columns.Add(dColValue); DataColumn dColSE = new DataColumn(); dColSE.DataType = System.Type.GetType("System.Double"); dColSE.ColumnName = "Std. Error"; tblRegResult.Columns.Add(dColSE); DataColumn dColTValue = new DataColumn(); dColTValue.DataType = System.Type.GetType("System.Double"); dColTValue.ColumnName = "z value"; tblRegResult.Columns.Add(dColTValue); DataColumn dColPvT = new DataColumn(); dColPvT.DataType = System.Type.GetType("System.Double"); dColPvT.ColumnName = "Pr(>|z|)"; tblRegResult.Columns.Add(dColPvT); int intNCoeff = nIDepen + 1; //Store Data Table by R result for (int j = 0; j < intNCoeff; j++) { DataRow pDataRow = tblRegResult.NewRow(); if (j == 0) { pDataRow["Name"] = "(Intercept)"; } else { pDataRow["Name"] = independentNames[j - 1]; } pDataRow["Estimate"] = Math.Round(matCoe[j, 0], intDeciPlaces); pDataRow["Std. Error"] = Math.Round(matCoe[j, 1], intDeciPlaces); pDataRow["z value"] = Math.Round(matCoe[j, 2], intDeciPlaces); pDataRow["Pr(>|z|)"] = Math.Round(matCoe[j, 3], intDeciPlaces); tblRegResult.Rows.Add(pDataRow); } //Assign Datagridview to Data Table pfrmRegResult.dgvResults.DataSource = tblRegResult; //Get Data Table DataTable pDT = null; if (pMapLayer is MapPointLayer) { MapPointLayer pMapPointLyr = default(MapPointLayer); pMapPointLyr = (MapPointLayer)pMapLayer; pDT = pMapPointLyr.DataSet.DataTable; } else if (pMapLayer is MapPolygonLayer) { MapPolygonLayer pMapPolyLyr = default(MapPolygonLayer); pMapPolyLyr = (MapPolygonLayer)pMapLayer; pDT = pMapPolyLyr.DataSet.DataTable; } int nFeature = pDT.Rows.Count; //Assign values at Textbox string strDecimalPlaces = "N" + intDeciPlaces.ToString(); string[] strResults = new string[6]; strResults[0] = "Number of rows: " + nFeature.ToString(); strResults[1] = "AIC: " + nvecNonAIC.Last().ToString(strDecimalPlaces); strResults[2] = "Null deviance: " + dblNullDevi.ToString(strDecimalPlaces) + " on " + dblNullDF.ToString("N0") + " degrees of freedom"; strResults[3] = "Residual deviance: " + dblResiDevi.ToString(strDecimalPlaces) + " on " + dblResiDF.ToString("N0") + " degrees of freedom"; strResults[4] = "Nagelkerke pseudo R squared: " + dblPseudoRsquared.ToString(strDecimalPlaces); if (chkResiAuto.Checked) { strResults[5] = "MC of residuals: " + dblResiLMMC.ToString("N3") + ", p-value: " + dblResiLMpVal.ToString("N3"); } else { strResults[5] = ""; } pfrmRegResult.txtOutput.Lines = strResults; if (chkSave.Checked) { pfrmProgress.lblStatus.Text = "Saving residuals:"; //The field names are related with string[] DeterminedName in clsSnippet string strResiFldName = lstSave.Items[0].SubItems[1].Text; //Get EVs and residuals NumericVector nvResiduals = m_pEngine.Evaluate("as.numeric(residuals(sample.glm, type='" + cboResiType.Text + "'))").AsNumeric(); // Create field, if there isn't // Create field, if there isn't if (m_dt.Columns.IndexOf(strResiFldName) == -1) { //Add fields DataColumn pColumn = new DataColumn(strResiFldName); pColumn.DataType = Type.GetType("System.Double"); m_dt.Columns.Add(pColumn); } else { DialogResult dialogResult = MessageBox.Show("Do you want to overwrite " + strResiFldName + " field?", "Overwrite", MessageBoxButtons.YesNo); if (dialogResult == DialogResult.No) { return; } } //Update Field int featureIdx = 0; int intResiFldIdx = m_dt.Columns.IndexOf(strResiFldName); foreach (DataRow row in m_dt.Rows) { //Update Residuals row[intResiFldIdx] = nvResiduals[featureIdx]; featureIdx++; } //Save Result; if (m_pMaplayer is MapPointLayer) { MapPointLayer pMapPointLyr = default(MapPointLayer); pMapPointLyr = (MapPointLayer)m_pMaplayer; pMapPointLyr.DataSet.Save(); } else if (m_pMaplayer is MapPolygonLayer) { MapPolygonLayer pMapPolyLyr = default(MapPolygonLayer); pMapPolyLyr = (MapPolygonLayer)m_pMaplayer; pMapPolyLyr.DataSet.Save(); } else if (m_pMaplayer is MapLineLayer) { MapLineLayer pMapLineLyr = default(MapLineLayer); pMapLineLyr = (MapLineLayer)m_pMaplayer; pMapLineLyr.DataSet.Save(); } } pfrmRegResult.Show(); } catch (Exception ex) { frmErrorLog pfrmErrorLog = new frmErrorLog(); pfrmErrorLog.ex = ex; pfrmErrorLog.ShowDialog(); return; } }
private void btnRun_Click(object sender, EventArgs e) { try { if (cboFieldName.Text == "") { MessageBox.Show("Please select the dependent input variables to be used in the regression model.", "Please choose at least one input variable"); return; } if (lstIndeVar.Items.Count == 0) { MessageBox.Show("Please select independents input variables to be used in the regression model.", "Please choose at least one input variable"); return; } frmProgress pfrmProgress = new frmProgress(); pfrmProgress.lblStatus.Text = "Pre-Processing:"; pfrmProgress.pgbProgress.Style = ProgressBarStyle.Marquee; pfrmProgress.Show(); //Decimal places int intDeciPlaces = 5; //Get number of Independent variables int nIDepen = lstIndeVar.Items.Count; // Gets the column of the dependent variable String dependentName = (string)cboFieldName.SelectedItem; //sourceTable.AcceptChanges(); //DataTable dependent = sourceTable.DefaultView.ToTable(false, dependentName); // Gets the columns of the independent variables String[] independentNames = new string[nIDepen]; for (int j = 0; j < nIDepen; j++) { independentNames[j] = (string)lstIndeVar.Items[j]; } int nFeature = m_dt.Rows.Count; //Get index for independent and dependent variables int intDepenIdx = m_dt.Columns.IndexOf(dependentName); int[] idxes = new int[nIDepen]; for (int j = 0; j < nIDepen; j++) { idxes[j] = m_dt.Columns.IndexOf(independentNames[j]); } //Store independent values at Array double[] arrDepen = new double[nFeature]; double[][] arrInDepen = new double[nIDepen][]; for (int j = 0; j < nIDepen; j++) { arrInDepen[j] = new double[nFeature]; } int i = 0; foreach (DataRow row in m_dt.Rows) { arrDepen[i] = Convert.ToDouble(row[intDepenIdx]); for (int j = 0; j < nIDepen; j++) { arrInDepen[j][i] = Convert.ToDouble(row[idxes[j]]); } i++; } //Plot command for R StringBuilder plotCommmand = new StringBuilder(); //Dependent variable to R vector NumericVector vecDepen = m_pEngine.CreateNumericVector(arrDepen); m_pEngine.SetSymbol(dependentName, vecDepen); plotCommmand.Append("lm(" + dependentName + "~"); for (int j = 0; j < nIDepen; j++) { //double[] arrVector = arrInDepen.GetColumn<double>(j); NumericVector vecIndepen = m_pEngine.CreateNumericVector(arrInDepen[j]); m_pEngine.SetSymbol(independentNames[j], vecIndepen); plotCommmand.Append(independentNames[j] + "+"); } plotCommmand.Remove(plotCommmand.Length - 1, 1); plotCommmand.Append(")"); m_pEngine.Evaluate("sum.lm <- summary(" + plotCommmand + ")"); NumericMatrix matCoe = m_pEngine.Evaluate("as.matrix(sum.lm$coefficient)").AsNumericMatrix(); NumericVector vecF = m_pEngine.Evaluate("as.numeric(sum.lm$fstatistic)").AsNumeric(); m_pEngine.Evaluate("fvalue <- as.numeric(sum.lm$fstatistic)"); double dblPValueF = m_pEngine.Evaluate("pf(fvalue[1],fvalue[2],fvalue[3],lower.tail=F)").AsNumeric().First(); double dblRsqaure = m_pEngine.Evaluate("sum.lm$r.squared").AsNumeric().First(); double dblAdjRsqaure = m_pEngine.Evaluate("sum.lm$adj.r.squared").AsNumeric().First(); double dblResiSE = m_pEngine.Evaluate("sum.lm$sigma").AsNumeric().First(); NumericVector vecResiDF = m_pEngine.Evaluate("sum.lm$df").AsNumeric(); double dblResiMC = 0; double dblResiMCpVal = 0; if (chkResiAuto.Checked) { if (!m_blnCreateSWM) { //Get the file path and name to create spatial weight matrix string strNameR = m_pSnippet.FilePathinRfromLayer(m_pMaplayer); if (strNameR == null) { return; } //Create spatial weight matrix in R if (m_pMaplayer is MapPointLayer) { m_pEngine.Evaluate("sample.shp <- readShapePoints('" + strNameR + "')"); } else if (m_pMaplayer is MapPolygonLayer) { m_pEngine.Evaluate("sample.shp <- readShapePoly('" + strNameR + "')"); } else { MessageBox.Show("This geometry type is not supported"); pfrmProgress.Close(); this.Close(); } int intSuccess = m_pSnippet.CreateSpatialWeightMatrix(m_pEngine, m_pMaplayer, txtSWM.Text, pfrmProgress); if (intSuccess == 0) { return; } } m_pEngine.Evaluate("sample.n <- length(sample.nb)"); //Calculate MC m_pEngine.Evaluate("zmc <- lm.morantest(" + plotCommmand.ToString() + ", listw=sample.listw, zero.policy=TRUE)"); dblResiMC = m_pEngine.Evaluate("zmc$estimate[1]").AsNumeric().First(); dblResiMCpVal = m_pEngine.Evaluate("zmc$p.value").AsNumeric().First(); } pfrmProgress.lblStatus.Text = "Printing Output:"; //Open Ouput form frmRegResult pfrmRegResult = new frmRegResult(); pfrmRegResult.Text = "Linear Regression Summary"; //Create DataTable to store Result System.Data.DataTable tblRegResult = new DataTable("OLSResult"); //Assign DataTable DataColumn dColName = new DataColumn(); dColName.DataType = System.Type.GetType("System.String"); dColName.ColumnName = "Name"; tblRegResult.Columns.Add(dColName); DataColumn dColValue = new DataColumn(); dColValue.DataType = System.Type.GetType("System.Double"); dColValue.ColumnName = "Estimate"; tblRegResult.Columns.Add(dColValue); DataColumn dColSE = new DataColumn(); dColSE.DataType = System.Type.GetType("System.Double"); dColSE.ColumnName = "Std. Error"; tblRegResult.Columns.Add(dColSE); DataColumn dColTValue = new DataColumn(); dColTValue.DataType = System.Type.GetType("System.Double"); dColTValue.ColumnName = "t value"; tblRegResult.Columns.Add(dColTValue); DataColumn dColPvT = new DataColumn(); dColPvT.DataType = System.Type.GetType("System.Double"); dColPvT.ColumnName = "Pr(>|t|)"; tblRegResult.Columns.Add(dColPvT); //Store Data Table by R result for (int j = 0; j < nIDepen + 1; j++) { DataRow pDataRow = tblRegResult.NewRow(); if (j == 0) { pDataRow["Name"] = "(Intercept)"; } else { pDataRow["Name"] = independentNames[j - 1]; } pDataRow["Estimate"] = Math.Round(matCoe[j, 0], intDeciPlaces); pDataRow["Std. Error"] = Math.Round(matCoe[j, 1], intDeciPlaces); pDataRow["t value"] = Math.Round(matCoe[j, 2], intDeciPlaces); pDataRow["Pr(>|t|)"] = Math.Round(matCoe[j, 3], intDeciPlaces); tblRegResult.Rows.Add(pDataRow); } //Assign Datagridview to Data Table pfrmRegResult.dgvResults.DataSource = tblRegResult; //Assign values at Textbox string[] strResults = null; if (chkResiAuto.Checked) { strResults = new string[4]; strResults[3] = "MC of residuals: " + dblResiMC.ToString("N3") + ", p-value: " + dblResiMCpVal.ToString("N3"); } else { strResults = new string[3]; } strResults[0] = "Residual standard error: " + dblResiSE.ToString("N" + intDeciPlaces.ToString()) + " on " + vecResiDF[1].ToString() + " degrees of freedom"; strResults[1] = "Multiple R-squared: " + dblRsqaure.ToString("N" + intDeciPlaces.ToString()) + ", Adjusted R-squared: " + dblAdjRsqaure.ToString("N" + intDeciPlaces.ToString()); strResults[2] = "F-Statistic: " + vecF[0].ToString("N" + intDeciPlaces.ToString()) + " on " + vecF[1].ToString() + " and " + vecF[2].ToString() + " DF, p-value: " + dblPValueF.ToString("N" + intDeciPlaces.ToString()); pfrmRegResult.txtOutput.Lines = strResults; pfrmRegResult.Show(); //Create Plots for Regression if (chkPlots.Checked) { string strTitle = "Linear Regression Results"; string strCommand = "plot(" + plotCommmand + ");"; m_pSnippet.drawPlottoForm(strTitle, strCommand); } //Save Outputs in SHP if (chkSave.Checked) { //The field names are related with string[] DeterminedName in clsSnippet string strResiFldName = lstSave.Items[0].SubItems[1].Text; //Get EVs and residuals NumericVector nvResiduals = m_pEngine.Evaluate("as.numeric(sum.lm$residuals)").AsNumeric(); // Create field, if there isn't // Create field, if there isn't if (m_dt.Columns.IndexOf(strResiFldName) == -1) { //Add fields DataColumn pColumn = new DataColumn(strResiFldName); pColumn.DataType = Type.GetType("System.Double"); m_dt.Columns.Add(pColumn); } else { DialogResult dialogResult = MessageBox.Show("Do you want to overwrite " + strResiFldName + " field?", "Overwrite", MessageBoxButtons.YesNo); if (dialogResult == DialogResult.No) { return; } } //Update Field int featureIdx = 0; int intResiFldIdx = m_dt.Columns.IndexOf(strResiFldName); foreach (DataRow row in m_dt.Rows) { //Update Residuals row[intResiFldIdx] = nvResiduals[featureIdx]; featureIdx++; } //Save Result; if (m_pMaplayer is MapPointLayer) { MapPointLayer pMapPointLyr = default(MapPointLayer); pMapPointLyr = (MapPointLayer)m_pMaplayer; pMapPointLyr.DataSet.Save(); } else if (m_pMaplayer is MapPolygonLayer) { MapPolygonLayer pMapPolyLyr = default(MapPolygonLayer); pMapPolyLyr = (MapPolygonLayer)m_pMaplayer; pMapPolyLyr.DataSet.Save(); } else if (m_pMaplayer is MapLineLayer) { MapLineLayer pMapLineLyr = default(MapLineLayer); pMapLineLyr = (MapLineLayer)m_pMaplayer; pMapLineLyr.DataSet.Save(); } MessageBox.Show("Residuals are stored in the shape file"); } pfrmProgress.Close(); } catch (Exception ex) { frmErrorLog pfrmErrorLog = new frmErrorLog(); pfrmErrorLog.ex = ex; pfrmErrorLog.ShowDialog(); return; } }