static void Main(string[] args) { var mnistDataParser = new MnistDataParser(); var trainingRecords = mnistDataParser.Parse("d:\\train-images", "d:\\train-labels"); var testRecords = mnistDataParser.Parse("d:\\test-images", "d:\\test-labels"); var neuralNetwork = new Network(new[] {784, 30, 10}); var benchmark = new Benchmark(neuralNetwork); for (double accuracy = 0; accuracy < .9;) { accuracy = benchmark.AccuracyFor(testRecords); Console.WriteLine("Success rate: {0} %", accuracy*100); neuralNetwork.Train(trainingRecords, .01, 10); } }
static void Main(string[] args) { var mnistDataParser = new MnistDataParser(); var trainingRecords = mnistDataParser.Parse("d:\\train-images", "d:\\train-labels"); var testRecords = mnistDataParser.Parse("d:\\test-images", "d:\\test-labels"); var neuralNetwork = new Network(new[] { 784, 30, 10 }); var benchmark = new Benchmark(neuralNetwork); for (double accuracy = 0; accuracy < .9;) { accuracy = benchmark.AccuracyFor(testRecords); Console.WriteLine("Success rate: {0} %", accuracy * 100); neuralNetwork.Train(trainingRecords, .01, 10); } }