예제 #1
0
    public ConstraintSample3(Microsoft.Xna.Framework.Game game)
      : base(game)
    {
      // Add basic force effects.
      Simulation.ForceEffects.Add(new Gravity());
      Simulation.ForceEffects.Add(new Damping());

      // Add a ground plane.
      RigidBody groundPlane = new RigidBody(new PlaneShape(Vector3F.UnitY, 0))
      {
        Name = "GroundPlane",           // Names are not required but helpful for debugging.
        MotionType = MotionType.Static,
      };
      Simulation.RigidBodies.Add(groundPlane);

      // ----- HingeJoint with AngularVelocityMotor
      // A board is fixed on a pole like a wind wheel.
      // An AngularVelocityMotor creates a rotation with constant angular velocity around the
      // hinge axis.
      RigidBody box0 = new RigidBody(new BoxShape(0.1f, 2f, 0.1f))
      {
        Pose = new Pose(new Vector3F(-2, 1, 0)),
        MotionType = MotionType.Static,
      };
      Simulation.RigidBodies.Add(box0);
      RigidBody box1 = new RigidBody(new BoxShape(0.1f, 0.4f, 1f))
      {
        Pose = new Pose(new Vector3F(-2 + 0.05f, 1.8f, 0))
      };
      Simulation.RigidBodies.Add(box1);
      HingeJoint hingeJoint = new HingeJoint
      {
        BodyA = box0,
        BodyB = box1,
        AnchorPoseALocal = new Pose(new Vector3F(0.05f, 0.8f, 0)),
        AnchorPoseBLocal = new Pose(new Vector3F(-0.05f, 0, 0)),
        CollisionEnabled = false,
      };
      Simulation.Constraints.Add(hingeJoint);
      AngularVelocityMotor angularVelocityMotor = new AngularVelocityMotor
      {
        BodyA = box0,
        // The rotation axis is the local x axis of BodyA.
        AxisALocal = Vector3F.UnitX,
        BodyB = box1,
        TargetVelocity = 10,
        // The motor power is limit, so that the rotation can be stopped by other objects blocking
        // the movement.
        MaxForce = 10000,
        // The HingeJoint controls all other axes. So this motor must only act on the hinge
        // axis.
        UseSingleAxisMode = true,
        CollisionEnabled = false,
      };
      Simulation.Constraints.Add(angularVelocityMotor);

      // ----- A PrismaticJoint with a LinearVelocityMotor.
      RigidBody box2 = new RigidBody(new BoxShape(0.7f, 0.7f, 0.7f))
      {
        Pose = new Pose(new Vector3F(0, 2, 0)),
        MotionType = MotionType.Static,
      };
      Simulation.RigidBodies.Add(box2);
      RigidBody box3 = new RigidBody(new BoxShape(0.5f, 1.5f, 0.5f))
      {
        Pose = new Pose(new Vector3F(0, 1, 0))
      };
      Simulation.RigidBodies.Add(box3);
      _prismaticJoint = new PrismaticJoint
      {
        BodyA = box2,
        BodyB = box3,
        AnchorPoseALocal = new Pose(new Vector3F(0, 0, 0), new Matrix33F(0, 1, 0,
                                                                        -1, 0, 0,
                                                                         0, 0, 1)),
        AnchorPoseBLocal = new Pose(new Vector3F(0, 0, 0), new Matrix33F(0, 1, 0,
                                                                        -1, 0, 0,
                                                                         0, 0, 1)),
        CollisionEnabled = false,
      };
      Simulation.Constraints.Add(_prismaticJoint);
      _linearVelocityMotor = new LinearVelocityMotor
      {
        BodyA = box2,
        AxisALocal = -Vector3F.UnitY,
        BodyB = box3,
        TargetVelocity = 1,
        CollisionEnabled = false,
        MaxForce = 10000,
        UseSingleAxisMode = true,
      };
      Simulation.Constraints.Add(_linearVelocityMotor);

      // ----- A BallJoint with a TwistSwingLimit and a QuaternionMotor
      // The ball joint connects a cylinder to a static box.
      // The twist-swing limits rotational movement.
      // The quaternion motor acts like a spring that controls the angle of joint.
      RigidBody box4 = new RigidBody(new BoxShape(0.5f, 0.5f, 0.5f))
      {
        Pose = new Pose(new Vector3F(2, 2, 0)),
        MotionType = MotionType.Static,
      };
      Simulation.RigidBodies.Add(box4);
      RigidBody cylinder0 = new RigidBody(new CylinderShape(0.1f, 0.75f))
      {
        Pose = new Pose(new Vector3F(2, 2 - 0.75f / 2 - 0.25f, 0))
      };
      Simulation.RigidBodies.Add(cylinder0);
      _ballJoint = new BallJoint
      {
        BodyA = box4,
        BodyB = cylinder0,
        AnchorPositionALocal = new Vector3F(0, -0.25f, 0),
        AnchorPositionBLocal = new Vector3F(0, 0.75f / 2, 0),
        CollisionEnabled = false,
      };
      Simulation.Constraints.Add(_ballJoint);
      _twistSwingLimit = new TwistSwingLimit
      {
        BodyA = box4,
        // The first column is the twist axis (-y). The other two columns are the swing axes.
        AnchorOrientationALocal = new Matrix33F(0, 1, 0,
                                               -1, 0, 0,
                                                0, 0, 1),
        BodyB = cylinder0,
        AnchorOrientationBLocal = new Matrix33F(0, 1, 0,
                                               -1, 0, 0,
                                                0, 0, 1),
        CollisionEnabled = false,
        // The twist is limited to +/- 10°. The swing limits are +/- 40° and +/- 60°. This creates
        // a deformed cone that limits the swing movements (see visualization).
        Minimum = new Vector3F(-MathHelper.ToRadians(10), -MathHelper.ToRadians(40), -MathHelper.ToRadians(60)),
        Maximum = new Vector3F(MathHelper.ToRadians(10), MathHelper.ToRadians(40), MathHelper.ToRadians(60)),
      };
      Simulation.Constraints.Add(_twistSwingLimit);
      QuaternionMotor quaternionMotor = new QuaternionMotor
      {
        BodyA = box4,
        AnchorOrientationALocal = Matrix33F.Identity,
        BodyB = cylinder0,
        AnchorOrientationBLocal = Matrix33F.Identity,
        CollisionEnabled = false,
        // The QuaternionMotor controls the orientation of the second body relative to the first
        // body. Here, we define that the cylinder should swing 30° away from the default 
        // orientation.
        TargetOrientation = QuaternionF.CreateRotationZ(MathHelper.ToRadians(30)),
        // Position and orientation motors are similar to damped-springs. We can control
        // the stiffness and damping of the spring. (It is also possible to set the SpringConstant
        // to 0 if the QuaternionMotor should only act as a rotational damping.)
        SpringConstant = 100,
        DampingConstant = 20,
      };
      Simulation.Constraints.Add(quaternionMotor);
    }
예제 #2
0
        //--------------------------------------------------------------
        /// <summary>
        /// Initializes a new instance of the <see cref="RagdollMotor"/> class.
        /// </summary>
        /// <param name="boneIndex">The index of the controlled bone.</param>
        /// <param name="parentIndex">
        /// The index of the parent bone to which the controlled bone is connected.
        /// (Only relevant for constraint motors.)
        /// </param>
        /// <exception cref="ArgumentOutOfRangeException">
        /// <paramref name="boneIndex"/> is negative.
        /// </exception>
        public RagdollMotor(int boneIndex, int parentIndex)
        {
            if (boneIndex < 0)
            throw new ArgumentOutOfRangeException("boneIndex", "boneIndex must not be negative.");

              _boneIndex = boneIndex;
              _parentIndex = parentIndex;

              _quaternionMotor = new QuaternionMotor
              {
            DampingConstant = 1000000,
            SpringConstant = 10000000,
            MaxForce = float.PositiveInfinity,
            AnchorOrientationALocal = Matrix33F.Identity,
            AnchorOrientationBLocal = Matrix33F.Identity,

            // Single-axis mode is faster but less stable. In single-axis mode, 1 DOF (degree of
            // freedom) constraint is applied along the rotation axis. If single-axis mode is turned
            // off, a 3 DOF is applied: The bones rotate around the rotation axis and 2 more constraints
            // stabilize the bone in the 2 axes orthogonal to the rotation axis.
            UseSingleAxisMode = false,

              };
        }