예제 #1
0
 /// <summary>
 /// the error deriv at top output layer must have been set up before call this method.
 /// This process only do backprop computations. It does not update model weights at all.
 /// Need to call update_weight afterwards to update models.
 /// </summary>
 /// <param name="input_batch"></param>
 /// <param name="momentum"></param>
 /// <param name="learning_rate"></param>
 public void backward_propagate_deriv(BatchSample_Input input_batch)
 {
     // step 1, compute the derivatives for the output values of each layer
     backward_calculate_layerout_deriv(input_batch.batchsize);
     // step 2, compute the derivatives for the connections of each neural link layer
     backward_calculate_weight_deriv(input_batch);
 }
예제 #2
0
        unsafe public void backward_calculate_weight_deriv(BatchSample_Input input_batch) //, int alpha_index) // float[] alpha)
        {
            int batchsize = input_batch.batchsize;

            for (int i = 0; i < neurallinks.Count; i++)
            {
                neurallinks[i].ZeroDeriv();

                if (ParameterSetting.UpdateBias)
                {
                    MathOperatorManager.GlobalInstance.Matrix_Aggragate(neurallayers[i + 1].ErrorDeriv, neurallinks[i].BiasDeriv, input_batch.batchsize, neurallinks[i].NeuralLinkModel.Neural_Out.Number);
                }

                if (i == 0)
                {
                    if (neurallinks[i].NeuralLinkModel.Nt == N_Type.Fully_Connected)
                    {
                        MathOperatorManager.GlobalInstance.SEQ_Sparse_Matrix_Transpose_Multiply_INTEX(input_batch, neurallinks[i].WeightDeriv, neurallayers[i + 1].ErrorDeriv, neurallinks[i].NeuralLinkModel.Neural_In.Number, neurallinks[i].NeuralLinkModel.Neural_Out.Number, neurallinks[i].NeuralLinkModel.N_Winsize);
                    }
                    else if (neurallinks[i].NeuralLinkModel.Nt == N_Type.Convolution_layer)
                    {
                        MathOperatorManager.GlobalInstance.Convolution_Sparse_Matrix_Product_INTEX(neurallayers[i + 1].ErrorDeriv, neurallinks[i].LayerMaxPooling_Index, input_batch, neurallinks[i].NeuralLinkModel.N_Winsize,
                                                                                                   batchsize, neurallayers[i + 1].Number, neurallinks[i].WeightDeriv, neurallinks[i].NeuralLinkModel.Neural_In.Number);
                    }
                }
                else
                {
                    MathOperatorManager.GlobalInstance.Matrix_Product(neurallayers[i].Output, neurallayers[i + 1].ErrorDeriv, neurallinks[i].WeightDeriv,
                                                                      batchsize, neurallayers[i].Number, neurallayers[i + 1].Number);
                }
            }
        }
예제 #3
0
        unsafe public void Forward_CalSimilarityScore(BatchSample_Input query_batch, BatchSample_Input doc_batch)
        {
            /// forward (query doc, negdoc) streaming.
            dnn_model_query.forward_activate(query_batch);

            dnn_model_doc.forward_activate(doc_batch);

            MathOperatorManager.GlobalInstance.Cosine_Similarity(dnn_model_query.neurallayers.Last().Output,
                                                                 dnn_model_doc.neurallayers.Last().Output, alphaCudaPiece, ParameterSetting.NTRIAL + 1, ParameterSetting.BATCH_SIZE, 0,
                                                                 query_batch.batchsize, dnn_model_query.OutputLayerSize, ParameterSetting.DSSMEpsilon); // float.Epsilon);
        }
예제 #4
0
파일: InputStream.cs 프로젝트: a170811/IWE
        public void get_dimension(string fileName)
        {
            if (ParameterSetting.LoadInputBackwardCompatibleMode == "BOW")
            {
                // code for back-compatibility to the previous BOW bin format
                mstream = new FileStream(fileName, FileMode.Open, FileAccess.Read);
                mreader = new BinaryReader(mstream);
                mstream.Seek(-3 * sizeof(Int32), SeekOrigin.End);

                Feature_Size         = mreader.ReadInt32(); //// binary feature file stores feature dimension
                total_Batch_Size     = mreader.ReadInt32();
                MAXELEMENTS_PERBATCH = mreader.ReadInt32();
                MAXSEQUENCE_PERBATCH = ParameterSetting.BATCH_SIZE;
            }
            else if (ParameterSetting.LoadInputBackwardCompatibleMode == "SEQ")
            {
                // code for back-compatibility to the previous SEQ bin format, with unnecessary batch_size and feature_dim
                mstream = new FileStream(fileName, FileMode.Open, FileAccess.Read);
                mreader = new BinaryReader(mstream);
                mstream.Seek(-4 * sizeof(Int32), SeekOrigin.End);

                Feature_Size         = mreader.ReadInt32(); //// binary feature file stores feature dimension
                total_Batch_Size     = mreader.ReadInt32();
                MAXSEQUENCE_PERBATCH = mreader.ReadInt32();
                MAXELEMENTS_PERBATCH = mreader.ReadInt32();
            }
            else
            {
                mstream = new FileStream(fileName, FileMode.Open, FileAccess.Read);
                mreader = new BinaryReader(mstream);
                mstream.Seek(-5 * sizeof(Int32), SeekOrigin.End);

                Feature_Size         = mreader.ReadInt32(); //// binary feature file stores feature dimension
                total_Batch_Size     = mreader.ReadInt32();
                MAXSEQUENCE_PERBATCH = mreader.ReadInt32();
                MAXELEMENTS_PERBATCH = mreader.ReadInt32();
                int batch_size = mreader.ReadInt32();
                if (batch_size != ParameterSetting.BATCH_SIZE)
                {
                    throw new Exception(string.Format(
                                            "Batch_Size does not match between configuration and input data!\n\tFrom config: {0}.\n\tFrom data ({1}): {2}"
                                            , ParameterSetting.BATCH_SIZE, fileName, batch_size)
                                        );
                }
            }
            Data = new BatchSample_Input(ParameterSetting.BATCH_SIZE, MAXSEQUENCE_PERBATCH, MAXELEMENTS_PERBATCH);

            BATCH_NUM = (total_Batch_Size + ParameterSetting.BATCH_SIZE - 1) / ParameterSetting.BATCH_SIZE;
            LAST_INCOMPLETE_BATCH_SIZE = total_Batch_Size % ParameterSetting.BATCH_SIZE;
            BATCH_INDEX = 0;
        }
예제 #5
0
파일: InputStream.cs 프로젝트: a170811/IWE
 public void CloseStream()
 {
     if (mstream != null)
     {
         mreader.Close();
         mstream.Close();
         mreader = null;
         mstream = null;
     }
     if (Data != null)
     {
         Data.Dispose();
         Data = null;
     }
 }
예제 #6
0
        public override void ProcessBatch(BatchSample_Input input)
        {
            for (int sample = 0; sample < input.batchsize; ++sample)
            {
                int seg_begin = sample >= 1 ? input.Sample_Idx_Mem[sample - 1] : 0;
                int seg_end   = input.Sample_Idx_Mem[sample];

                for (int seg_id = seg_begin; seg_id < seg_end; ++seg_id)
                {
                    int fea_begin = seg_id >= 1 ? input.Seg_Idx_Mem[seg_id - 1] : 0;
                    int fea_end   = input.Seg_Idx_Mem[seg_id];

                    for (int fea_id = fea_begin; fea_id < fea_end; ++fea_id)
                    {
                        int   fea_key       = input.Fea_Idx_Mem[fea_id];
                        float fea_value     = input.Fea_Value_Mem[fea_id];
                        float new_fea_value = (fea_value - FeaMin[fea_key]) / (FeaMax[fea_key] - FeaMin[fea_key] + float.Epsilon);
                        input.Fea_Value_Mem[fea_id] = new_fea_value;
                    }
                }
            }
        }
예제 #7
0
        public override void AnalysisBatch(BatchSample_Input input)
        {
            SampleNum += input.batchsize;
            for (int sample = 0; sample < input.batchsize; ++sample)
            {
                int seg_begin = sample >= 1 ? input.Sample_Idx_Mem[sample - 1] : 0;
                int seg_end   = input.Sample_Idx_Mem[sample];

                for (int seg_id = seg_begin; seg_id < seg_end; ++seg_id)
                {
                    int fea_begin = seg_id >= 1 ? input.Seg_Idx_Mem[seg_id - 1] : 0;
                    int fea_end   = input.Seg_Idx_Mem[seg_id];

                    for (int fea_id = fea_begin; fea_id < fea_end; ++fea_id)
                    {
                        int   fea_key   = input.Fea_Idx_Mem[fea_id];
                        float fea_value = input.Fea_Value_Mem[fea_id];

                        if (FeaDict.ContainsKey(fea_key))
                        {
                            FeaDict[fea_key] += 1;
                        }
                        else
                        {
                            FeaDict[fea_key] = 1;
                        }

                        if (FeaMin[fea_key] > fea_value)
                        {
                            FeaMin[fea_key] = fea_value;
                        }
                        if (FeaMax[fea_key] < fea_value)
                        {
                            FeaMax[fea_key] = fea_value;
                        }
                    }
                }
            }
        }
예제 #8
0
        /// <summary>
        /// given batch of input data. calculate the output.
        /// </summary>
        /// <param name="data"></param>
        //unsafe public void forward_activate( BatchSample_Input data, List<Amplib.AMPArrayInternal> layerOutputs)
        unsafe public void forward_activate(BatchSample_Input data)
        {
            int layerIndex = 0;

            foreach (NeuralLinkData neurallinkData in neurallinks)
            {
                NeuralLink neurallink = neurallinkData.NeuralLinkModel;
                ///first layer.
                if (layerIndex == 0)
                {
                    if (neurallink.Nt == N_Type.Fully_Connected)
                    {
                        MathOperatorManager.GlobalInstance.SEQ_Sparse_Matrix_Multiply_INTEX(data, neurallink.weight, neurallayers[layerIndex + 1].Output,
                                                                                            neurallink.Neural_In.Number, neurallink.Neural_Out.Number, neurallink.N_Winsize);
                    }
                    else if (neurallink.Nt == N_Type.Convolution_layer)
                    {
                        MathOperatorManager.GlobalInstance.Convolution_Sparse_Matrix_Multiply_INTEX(data, neurallink.weight, neurallinkData.LayerPoolingOutput, neurallink.Neural_In.Number, neurallink.Neural_Out.Number, neurallink.N_Winsize);

                        MathOperatorManager.GlobalInstance.Max_Pooling(neurallinkData.LayerPoolingOutput, data, neurallayers[layerIndex + 1].Output, neurallinkData.LayerMaxPooling_Index, neurallink.Neural_Out.Number);
                    }
                }
                else
                {
                    MathOperatorManager.GlobalInstance.Matrix_Multipy(neurallayers[layerIndex].Output, neurallink.weight, neurallayers[layerIndex + 1].Output, data.batchsize, neurallink.Neural_In.Number, neurallink.Neural_Out.Number, 0);
                }
                if (neurallink.Af == A_Func.Tanh)
                {
                    MathOperatorManager.GlobalInstance.Matrix_Add_Tanh(neurallayers[layerIndex + 1].Output, neurallink.bias, data.batchsize, neurallink.Neural_Out.Number);
                }
                else if (neurallink.Af == A_Func.Linear)
                {
                    MathOperatorManager.GlobalInstance.Matrix_Add_Vector(neurallayers[layerIndex + 1].Output, neurallink.bias, data.batchsize, neurallink.Neural_Out.Number);
                }
                layerIndex += 1;
            }
        }
예제 #9
0
        /*return the loss using by feedstream */
        //unsafe public float feedstream_batch( BatchSample_Input query_batch,  BatchSample_Input doc_batch, List<BatchSample_Input> negdoc_batches, bool train_update)
        unsafe public float feedstream_batch(BatchSample_Input query_batch, BatchSample_Input doc_batch, bool train_update, StreamReader srNCEProbDist)
        {
            /// forward (query doc, negdoc) streaming.
            Forward_CalSimilarityScore(query_batch, doc_batch);
            Negative_Sampling(query_batch.batchsize);

            MathOperatorManager.GlobalInstance.Cosine_Similarity_EX_Full(dnn_model_query.neurallayers.Last().Output,
                                                                         dnn_model_doc.neurallayers.Last().Output, GPU_negative_index_Array,
                                                                         alphaCudaPiece, ParameterSetting.NTRIAL, ParameterSetting.BATCH_SIZE,
                                                                         query_batch.batchsize, dnn_model_query.OutputLayerSize, ParameterSetting.DSSMEpsilon); //float.Epsilon);

            float maxlogpD = 0;

            if (ParameterSetting.reserved_settings.Contains("_maxlogpd_"))
            {
                string[] spl = ParameterSetting.reserved_settings.Split('_');
                for (int i = 0; i < spl.Length; i++)
                {
                    if (spl[i] == "maxlogpd" && i < spl.Length - 1)
                    {
                        maxlogpD = float.Parse(spl[i + 1]);
                        break;
                    }
                }
            }
            if (srNCEProbDist != null)
            {
                string line = string.Empty;
                for (int i = 0; i < ParameterSetting.BATCH_SIZE; i++)
                {
                    line = srNCEProbDist.ReadLine();
                    if (line == null)
                    {
                        break;
                    }
                    float logprob = float.Parse(line.Trim());
                    if (logprob > maxlogpD)
                    {
                        logprob = maxlogpD;
                    }
                    doc_dist[i] = logprob;
                    //doc_dist[i] = -(i + 1);
                }
            }
            else
            {
                for (int i = 0; i < ParameterSetting.BATCH_SIZE; i++)
                {
                    doc_dist[i] = (float)(-Math.Log(LearningParameters.total_doc_num));
                }
            }

            distCudaPiece.CopyIntoCuda(ParameterSetting.BATCH_SIZE); //this sets D+

            MathOperatorManager.GlobalInstance.FillOut_Dist_NCE_Full(distCudaPiece, GPU_negative_index_Array, ParameterSetting.NTRIAL, ParameterSetting.BATCH_SIZE, doc_batch.batchsize);
            MathOperatorManager.GlobalInstance.Calculate_Alpha_NCE(alphaCudaPiece, distCudaPiece, ParameterSetting.NTRIAL + 1, ParameterSetting.BATCH_SIZE, query_batch.batchsize, ParameterSetting.PARM_GAMMA);

            float error = 0;

            if (ParameterSetting.LOSS_REPORT == 1)
            {
                alphaCudaPiece.CopyOutFromCuda();
                for (int i = 0; i < query_batch.batchsize; i++)
                {
                    float mlambda = 0;

                    mlambda = -(float)Math.Log(Math.Max(float.Epsilon, 1 - first_alpha[i] / ParameterSetting.PARM_GAMMA));
                    for (int nt = 1; nt <= ParameterSetting.NTRIAL; nt++)
                    {
                        mlambda += -(float)Math.Log(Math.Max(float.Epsilon, 1 - first_alpha[nt * ParameterSetting.BATCH_SIZE + i] / ParameterSetting.PARM_GAMMA));
                    }

                    if (float.IsNaN(mlambda))
                    {
                        //Console.WriteLine("IsNaN");
                        throw new Exception("Error! NaN.");
                    }
                    if (float.IsInfinity(mlambda))
                    {
                        //Console.WriteLine("IsInfinity");
                        throw new Exception("Error! IsInfinity.");
                    }
                    error += mlambda;
                }
            }
            if (train_update)
            {
                Negative_Sampling_Transpose(query_batch.batchsize);

                /******* Calculate the error derivatives on the top layer outputs *****/
                calculate_deltaQD_TOP(Pos_QD_Pair_TOP, query_batch.batchsize);


                /// Only support GPU version now.
                calculate_deltaQD_TOPEX_Full(Neg_QD_Pair_TOP, query_batch.batchsize);

                // Query Derive Merge
                MathOperatorManager.GlobalInstance.Matrix_WeightAdd(dnn_model_query.neurallayers.Last().ErrorDeriv, Pos_QD_Pair_TOP.cuda_layer_Deriv_Q,
                                                                    query_batch.batchsize, dnn_model_query.OutputLayerSize, alphaCudaPiece, 0, 0);

                MathOperatorManager.GlobalInstance.Matrix_WeightAdd_Full(dnn_model_query.neurallayers.Last().ErrorDeriv, Neg_QD_Pair_TOP.cuda_layer_Deriv_Q,
                                                                         ParameterSetting.NTRIAL, ParameterSetting.BATCH_SIZE,
                                                                         query_batch.batchsize, dnn_model_query.OutputLayerSize, alphaCudaPiece, ParameterSetting.BATCH_SIZE, -1);

                // Doc Derive Merge
                MathOperatorManager.GlobalInstance.Matrix_WeightAdd(dnn_model_doc.neurallayers.Last().ErrorDeriv, Pos_QD_Pair_TOP.cuda_layer_Deriv_D,
                                                                    doc_batch.batchsize, dnn_model_doc.OutputLayerSize, alphaCudaPiece, 0, 0);

                MathOperatorManager.GlobalInstance.Matrix_WeightAdd_EX_Full(dnn_model_doc.neurallayers.Last().ErrorDeriv, Neg_QD_Pair_TOP.cuda_layer_Deriv_D,
                                                                            GPU_Inver_negative_index_Array,
                                                                            GPU_Inver_negative_value_Array, ParameterSetting.NTRIAL, ParameterSetting.BATCH_SIZE, doc_batch.batchsize,
                                                                            dnn_model_doc.OutputLayerSize, alphaCudaPiece, ParameterSetting.BATCH_SIZE, -1);
                // back propagate
                dnn_model_query.backward_propagate_deriv(query_batch);
                dnn_model_doc.backward_propagate_deriv(doc_batch);

                // update here
                // here we have to do all the backprop computations before updating the model, because the model's actual weights will affect the backprop computation
                dnn_model_query.update_weight(LearningParameters.momentum, LearningParameters.learning_rate * query_batch.batchsize / ParameterSetting.BATCH_SIZE);
                dnn_model_doc.update_weight(LearningParameters.momentum, LearningParameters.learning_rate * query_batch.batchsize / ParameterSetting.BATCH_SIZE);

                // and now it should support shared models
            }
            return(error);
        }
예제 #10
0
 public void Sparse2Dense_Matrix(BatchSample_Input data, CudaPieceFloat matrix, int batchsize, int outputDimension)
 {
     BasicMathlib.Sparse2Dense_Matrix(data.Seg_Idx_Mem, data.Fea_Idx_Mem, data.Fea_Value_Mem, matrix.MemPtr, batchsize, outputDimension);
 }
예제 #11
0
 public void Convolution_Sparse_Matrix_Product_INTEX(CudaPieceFloat upperOutputErrorDeriv, CudaPieceInt layerMaxPooling_Index, BatchSample_Input input_batch, int winSize, int batchsize, int outputDimension, CudaPieceFloat weightDeriv, int inputDimension)
 {
     BasicMathlib.Convolution_Sparse_Matrix_Product_INTEX(upperOutputErrorDeriv.MemPtr, layerMaxPooling_Index.MemPtr, input_batch.Seg_Idx_Mem, input_batch.Seg_Margin_Mem, input_batch.segsize, winSize,
                                                          batchsize, outputDimension, input_batch.Fea_Idx_Mem, input_batch.Fea_Value_Mem, weightDeriv.MemPtr, inputDimension);
 }
예제 #12
0
 public void Max_Pooling(CudaPieceFloat layerPoolingOutput, BatchSample_Input data, CudaPieceFloat output, CudaPieceInt layerMaxPooling_Index, int outputDimension)
 {
     BasicMathlib.Max_Pooling(layerPoolingOutput.MemPtr, data.Sample_Idx_Mem, data.batchsize, output.MemPtr, layerMaxPooling_Index.MemPtr, outputDimension);
 }
예제 #13
0
 public void Convolution_Sparse_Matrix_Multiply_INTEX(BatchSample_Input data, CudaPieceFloat weight, CudaPieceFloat layerPoolingOutput, int inputDimension, int outputDimension, int winSize)
 {
     BasicMathlib.Convolution_Sparse_Matrix_Multiply_INTEX(data.Sample_Idx_Mem, data.batchsize, data.Seg_Idx_Mem, data.Seg_Margin_Mem, data.Seg_Len_Mem, data.segsize, data.Fea_Idx_Mem, data.Fea_Value_Mem, data.elementsize,
                                                           weight.MemPtr, layerPoolingOutput.MemPtr, inputDimension, outputDimension, winSize);
 }
예제 #14
0
 public void Sparse2Dense_Matrix(BatchSample_Input data, CudaPieceFloat matrix, int batchsize, int outputDimension)
 {
     Cudalib.Sparse2Dense_Matrix(data.Seg_Idx, data.Fea_Idx, data.Fea_Value, matrix.CudaPtr, batchsize, outputDimension);
 }
예제 #15
0
 public void SEQ_Sparse_Matrix_Multiply_INTEX(BatchSample_Input data, CudaPieceFloat weight, CudaPieceFloat output, int inputDimension, int outputDimension, int winSize)
 {
     Cudalib.SEQ_Sparse_Matrix_Multiply_INTEX(data.Sample_Idx, data.batchsize, data.Seg_Idx, data.Seg_Margin, data.Seg_Len, data.segsize, data.Fea_Idx, data.Fea_Value, data.elementsize,
                                              weight.CudaPtr, output.CudaPtr, inputDimension, outputDimension, winSize);
 }
예제 #16
0
 public virtual void AnalysisBatch(BatchSample_Input input)
 {
 }
예제 #17
0
 public virtual void ProcessBatch(BatchSample_Input input)
 {
 }
예제 #18
0
 public void SEQ_Sparse_Matrix_Transpose_Multiply_INTEX(BatchSample_Input input_batch, CudaPieceFloat weightDeriv, CudaPieceFloat upperOutputErrorDeriv, int inputDimension, int outputDimension, int winSize)
 {
     BasicMathlib.SEQ_Sparse_Matrix_Transpose_Multiply_INTEX(input_batch.Sample_Idx_Mem, input_batch.batchsize, input_batch.Seg_Idx_Mem, input_batch.Seg_Margin_Mem, input_batch.Seg_Len_Mem, input_batch.segsize, input_batch.Fea_Idx_Mem, input_batch.Fea_Value_Mem, input_batch.elementsize,
                                                             weightDeriv.MemPtr, upperOutputErrorDeriv.MemPtr, inputDimension, outputDimension, winSize);
 }