public void Init() { gm = new GradientArrayMaker(0.5d); iws = new ImageWindowScheme(2, 2, 256, 256, 4); hm50 = new HogsMaker(gm, 50); avg50 = new MomentFeature(hm50, iws, 0); second50 = new MomentFeature(hm50, iws, 2); }
public void Init() { gm = new GradientArrayMaker(0.5d); iws = new ImageWindowScheme(2, 2, 256, 256, 4); hm50 = new HogsMaker(gm, 50); pf50 = new PeaksFeature(hm50, iws); hm2 = new HogsMaker(gm, 2); pf2 = new PeaksFeature(hm2, iws); }
public void Init() { gm = new GradientArrayMaker(0.5d); iws = new ImageWindowScheme(2, 2, 256, 256, 4); hm50 = new HogsMaker(gm, 50); raf50 = new RightAngleFeature(hm50, iws, 2); hm2 = new HogsMaker(gm, 2); raf2 = new RightAngleFeature(hm2, iws, 1); }
public static void Main(string[] args) { ResourceManager.Builder resources_builder = new ResourceManager.Builder(); //Set paths here ResourceManager resources = resources_builder.Build(); ImageWindowScheme iws = new ImageWindowScheme(16, 16, 256, 256, 3); GradientArrayMaker gm = new GradientArrayMaker(0.5); HogsMaker hm = new HogsMaker(gm, 50); FeatureSet.Builder feature_set_builder = new FeatureSet.Builder(); feature_set_builder.AddFeature(new MomentFeature(hm, iws, 2)); FeatureSet feature_set = feature_set_builder.Build(); ImageData.Factory idf = new ImageData.Factory(iws.XSites, iws.YSites, feature_set); Console.WriteLine("Importing ImageDatas:"); List<ImageData> images = resources.EachTrainingImage((Bitmap bmp) => { return idf.FromImage(bmp); }); Console.WriteLine("Importing Classifications:"); List<Classification> classifications = resources.EachTrainingCSV((StreamReader csv) => { return Classification.FromLabeling(csv, iws.XSites, iws.YSites); }); ModelFactory.Builder mfb = new ModelFactory.Builder(images, classifications); //Set hyperparameters here ModelFactory model_factory = mfb.Build(); Model mfm = model_factory.PseudoLikelihoodTrain(); Console.WriteLine("Model converged! Estimating image ..."); string imagename = 192.ToString("D3"); //I still like 192 ImageData input = resources.UsingTrainingBitmap(imagename+".jpg", bmp => idf.FromImage(bmp)); Classification out_classed; //See what I did there? string inference_algorithm = "logistic"; if(inference_algorithm == "logistic") { Console.WriteLine("Inferring with Logistic classifier..."); out_classed = mfm.LogisticInfer(input); } else if (inference_algorithm == "map") { Console.WriteLine("Inferring with MAP classifier..."); out_classed = mfm.MaximumAPosterioriInfer(input); } else { Console.WriteLine("Inferring with ICM classifier..."); out_classed = mfm.ICMInfer(input); } resources.UsingOutputCSV("192.txt", (sw) => { sw.Write(out_classed.ToString()); }); }
public PeaksFeature(HogsMaker sh, FeatureApplicationScheme windower) { SharedHogs = sh; Windower = windower; }
public MomentFeature(HogsMaker sh, FeatureApplicationScheme windower, int moment) { SharedHogs = sh; Windower = windower; Moment = moment; }
public RightAngleFeature(HogsMaker sh, FeatureApplicationScheme windower, int num_peaks) { SharedHogs = sh; Windower = windower; NumPeaks = num_peaks; }