/// <summary> /// A protected helper function used to train single learning sample /// </summary> /// <param name="trainingSample"> /// Training sample to use /// </param> /// <param name="currentIteration"> /// Current training epoch (Assumed to be positive and less than <c>trainingEpochs</c>) /// </param> /// <param name="trainingEpochs"> /// Number of training epochs (Assumed to be positive) /// </param> protected override void LearnSample(TrainingSample trainingSample, int currentIteration, int trainingEpochs) { // No validation here int layerCount = layers.Count; // Set input vector inputLayer.SetInput(trainingSample.InputVector); for (int i = 0; i < layerCount; i++) { layers[i].Run(); } // Set Errors meanSquaredError += (outputLayer as ActivationLayer).SetErrors(trainingSample.OutputVector); // Backpropagate errors for (int i = layerCount; i > 0;) { ActivationLayer layer = layers[--i] as ActivationLayer; if (layer != null) { layer.EvaluateErrors(); } } // Optimize synapse weights and neuron bias values for (int i = 0; i < layerCount; i++) { layers[i].Learn(currentIteration, trainingEpochs); } }
/// <summary> /// Create a new activation neuron /// </summary> /// <param name="parent"> /// The parent layer containing this neuron /// </param> /// <exception cref="System.ArgumentNullException"> /// If <c>parent</c> is <c>null</c> /// </exception> public ActivationNeuron(ActivationLayer parent) { Helper.ValidateNotNull(parent, "parent"); this.input = 0d; this.output = 0d; this.error = 0d; this.bias = 0d; this.parent = parent; }
/// <summary> /// Creates a new Back Propagation Network, with the specified input and output layers. (You /// are required to connect all layers using appropriate synapses, before using the constructor. /// Any changes made to the structure of the network after its creation may lead to complete /// malfunctioning) /// </summary> /// <param name="inputLayer"> /// The input layer /// </param> /// <param name="outputLayer"> /// The output layer /// </param> /// <exception cref="ArgumentNullException"> /// If <c>inputLayer</c> or <c>outputLayer</c> is <c>null</c> /// </exception> public BackpropagationNetwork(ActivationLayer inputLayer, ActivationLayer outputLayer) : base(inputLayer, outputLayer, TrainingMethod.Supervised) { this.meanSquaredError = 0d; this.isValidMSE = false; }