public static void save_output_to_file(string name, DeconvolutionLayer layer) { for (int k = 0; k < layer.feature_maps_number; k++) { save_matrix_to_file(name + " feature map " + k.ToString() + " ", layer.feature_maps[k].output, layer.map_width, layer.map_height); } }
public UpSamplingLayer(DeconvolutionLayer inp_deconv_layer, int outputmaps_num) { this.feature_maps_number = outputmaps_num; this.outputs = new List <float[, ]>(); this.feature_maps = new List <UpSampleFeatureMap>(); this.inputh = inp_deconv_layer.map_height; this.inputw = inp_deconv_layer.map_width; //decompression koef=2 this.outputwidth = inp_deconv_layer.map_width * 2; this.outputheight = inp_deconv_layer.map_height * 2; int proportion = inp_deconv_layer.feature_maps_number / outputmaps_num; //average-to-one-connection //averaging for (int j = 0; j < feature_maps_number * proportion; j++) { this.feature_maps.Add(new UpSampleFeatureMap(outputwidth, outputheight, inp_deconv_layer.feature_maps[j].output)); } }
//input is a picture's matrix public Network(int input_w, int input_h, int FL_feature_maps_number, int fl_kw, int fl_kh, int SL_feature_maps_number, int sl_kw, int sl_kh) { this.FL_feature_maps_number = FL_feature_maps_number; this.SL_feature_maps_number = SL_feature_maps_number; //create first convolutional layer(first layer) FirstLayer = new ConvolutionLayer(FL_feature_maps_number, fl_kw, fl_kh, input_w, input_h); //first subsampling layer(second layer) SecondLayer = new SubsamplingLayer(FirstLayer); //second convolutional layer(third layer).Consists of number of convolutional layers ThirdLayer = new ConvolutionLayer(SL_feature_maps_number, sl_kw, sl_kh, SecondLayer.outputwidth, SecondLayer.outputheight); //connect inputs with previous layer //Parallel conctruction (like RGB) 2 cards of new layer for 1 card of previous layer //like 6/3 = 2 //set topology for second layer List <int> topology = new List <int>(); int counter = 0; for (int i = 0; i < FL_feature_maps_number; i++) { for (int j = 0; j < SL_feature_maps_number / FL_feature_maps_number; j++) { topology.Add(counter); counter++; } SecondLayer.set_link_with_conv_next_layer(ThirdLayer, i, topology); topology.Clear(); } //set topology for third layer for (int i = 0; i < SL_feature_maps_number; i++) { int nextid = i * FL_feature_maps_number / SL_feature_maps_number; ThirdLayer.feature_maps[i].add_input_full_connection(SecondLayer.feature_maps[nextid].output); } /* * //all-to-all connection * List<int> topology = new List<int>(); * for (int i = 0; i < FL_feature_maps_number; i++) * { * for (int j = 0; j < SL_feature_maps_number; j++) * { * topology.Add(j); * } * SecondLayer.set_link_with_conv_next_layer(ThirdLayer, i, topology); * topology.Clear(); * } * * //set topology for third layer * for (int j = 0; j < ThirdLayer.feature_maps_number; j++) * { * for (int i = 0; i < SecondLayer.feature_maps_number; i++) * { * ThirdLayer.feature_maps[j].add_input_full_connection(SecondLayer.feature_maps[i].output); * } * } */ FourthLayer = new SubsamplingLayer(ThirdLayer); FifthLayer = new UpSamplingLayer(FourthLayer); SixthLayer = new DeconvolutionLayer(FifthLayer, ThirdLayer); SeventhLayer = new UpSamplingLayer(SixthLayer, SecondLayer.feature_maps_number); EightsLayer = new DeconvolutionLayer(SeventhLayer, FirstLayer); }